GlobeNewsWire: PARC, a Xerox company, develops "a hyperspectral imaging technology with the potential to be integrated into just about any existing imaging system. The technology demands a minimal cost and size overhead as it relies on a liquid crystal layer about as thick as a human hair."
"The PARC HSI technology endows any existing image sensor with spectral sensitivity without significantly increasing its cost or size. By sandwiching a liquid crystal layer between crossed polarizers and synchronizing the
drive of the liquid crystal with the camera’s image acquisition, the system performs interferometry between two polarizations of light that travel through the liquid crystal. The interferometric data are analyzed to provide the spectral information. Because the complexity of the device is shifted from hardware to software, the sophistication of full spectral processing is within reach anywhere images are normally taken."
PARC has prototyped its HSI technology by integrating a liquid crystal cell inside a commercial monochrome CMOS camera. The prototype offers the following performance:
An open-access PARC paper "Hyperspectral imaging with a liquid crystal polarization interferometer" by Alex Hegyi and Joerg Martini is published in Optics Express, Issue 22, Vol 23.
"The PARC HSI technology endows any existing image sensor with spectral sensitivity without significantly increasing its cost or size. By sandwiching a liquid crystal layer between crossed polarizers and synchronizing the
drive of the liquid crystal with the camera’s image acquisition, the system performs interferometry between two polarizations of light that travel through the liquid crystal. The interferometric data are analyzed to provide the spectral information. Because the complexity of the device is shifted from hardware to software, the sophistication of full spectral processing is within reach anywhere images are normally taken."
PARC has prototyped its HSI technology by integrating a liquid crystal cell inside a commercial monochrome CMOS camera. The prototype offers the following performance:
- 640 x 480 spatial resolution
- Up to 80 degree field of view
- Acquires 30 independent spectral bands in 0.4 seconds
- Wavelength range 400 nm to 1100 nm
- F/1.8 max aperture
An open-access PARC paper "Hyperspectral imaging with a liquid crystal polarization interferometer" by Alex Hegyi and Joerg Martini is published in Optics Express, Issue 22, Vol 23.