Toshiba Announces 2nd Sensor with CNR, and More

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
Business Wire: Toshiba announces 1/4-inch 8MP 1.12um BSI pixel T4K35 image sensor featuring Color Noise Reduction (CNR). The CNR has first appeared in 12MP sensor in Nov. 2012. The new T4K35 provides ~1.5 times higher SNR than a 1.12um pixel sensor without CNR. Together, BSI and CNR allow to achieve the 1.2um pixel SNR equal to Toshiba's existing 1.4um product. The sensor supports 30fps speed at full resolution. The sensor is planned to enter mass production in July 2013.

T4K35 Block Diagram

Business Wire: Toshiba also launches mass production of the previously announced 2MP 1.75um pixel T4K28 sensor with embedded ISP. The 1/5-inch sensor delivers 15fps at full resolution.

Also, the product pages for the previously announced 20MP 1.2um BSI TCM5115CL sensor has been published on Toshiba site. Also, a new 16MP 1.34um BSI pixel TCM5107CL product page has been published. The new sensor delivers 30fps at full resolution or 60fps in 1080p mode.

TCM5107CL Block Diagram
11:21 AM

Corephotonics Raised $5.2M in the First Round

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
Corephotonics announces its first round of financing with an investment of $5.2M. The company was founded by ex-Tessera team of David Mendlovic, Gal Shabtay, and Eran Kali. Magma Venture Partners and BetaAngels, led by VC practitioner Roberto Saint-Malo, participated in this first round of funding.

Corephotonics is currently developing two primary product lines:
  1. Actuators – tiny electro-mechanical engines which improve focusing capabilities, and enable optical image and video stabilization
  2. Computational cameras – sophisticated optical systems combined with complimentary image processing which will provide dramatic improvements, such as true optical zoom, lower profile optics, low light improvement, 3D mapping, and more.

12:42 PM

ON Semi Honored by ARRI during CES Emmy Awards

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
ON Semi: ARRI (Arnold & Richter Cine Technik) has been awarded the “Technology and Engineering Emmy Award” from the National Academy of Television Arts & Sciences for improvements in large format CMOS image sensors. When accepting the award, ARRI’s Managing Director Franz Kraus specifically thanked ON Semiconductor for its contribution as a partner in the product development.

"ARRI and ON Semiconductor have had a strong and collaborative relationship in the areas of product development and manufacturing for almost a decade," said Franz Kraus. "The design expertise and innovative sensor technology ON Semiconductor brought to this project, coupled with their consistent manufacturing quality and reliable worldwide supply chain network make them a valued partner to have in the highly demanding motion picture equipment marketplace."

"ON Semiconductor designed the ALEV III CMOS Image Sensor specifically for ARRI – utilizing our state-of-the-art imaging technology that resulted in a sensor design featuring a 14-bit true dynamic range in combination with 8 Mpixel resolution at 120 full frames per second," said Bob Klosterboer, SVP at ON Semi. "Working collaboratively with the team at ARRI, we successfully delivered a remarkable product that combines excellent noise performance with high image resolution and increased frame rate to enable precise slow motion image capture. Our congratulations go out to ARRI for their Emmy award."
12:21 PM

EU Suspends CMOS Sensor Customs Duty

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
IMV Europe, Vision Systems Design: Starting from Jan 1, 2013, Europe suspends the customs duty on CMOS sensors, responding to the request made by Framos, a Germany-based distributor of CMOS sensors.

CCDs have already enjoyed tax-free import rules since 2010. However, CMOS sensors were related to a tariff group of "parts for television cameras" and were levied a 5% customs duty.

Lou Hermans, COO of Belgium-based CMOSIS, commented: "It will make us a little less competitive, in the sense that people importing CMOS sensors from abroad [outside Europe] will not be confronted with the import duties anymore." However, he went on to say that CMOSIS is not really competing on price but on performance and the company is targeting niche sensing markets. "I don’t expect it will affect us that much," he said.

Thanks to PD for the link!
12:05 PM

ESPROS Announces TDI Imager Process

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
ESPROS' Jan 2013 Chips newsletter (subscription-only) announces CMOS process with CCD-like TDI functionality:

"This apparently simple concept is very difficult to implement in CMOS technology since a true charge handling over several stages is normally not provided. This is whereour ESPROS Photonic CMOS process plays its strengths. In a pure CCD process, the core pixels could be implemented straightforward (in-fact a 2D CCD array does the job), but there is no performance analog circuitry available to gather, multiplex and amplify the incoming lines on one or few output pads at the required speed.

In close cooperation with a very ambitious customer, epc engineers created an implementation of the TDI concept in the ESPROS Photonic CMOS process. The challenging requirements were assessed using device simulation and optimum structures were selected for the test-chip, which is currently in production.
"

11:10 AM

Main Engine Starting Procedure Step by Step.

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
Starting Of The Main Engine Procedure ! Step By Step.
 Disengage the turning gear.
 Start main lube oil pump and cam shaft pump and
observe the pressure and temperature.
 Start JCW pump and observe the pressure.
 Open the main air valve on the air bottle and open
air to the distributor.
 Check oil flow through the sight glasses in piston
cooling outlet and turbocharger.
 In Wartsila engines, additionally start crosshead
lube oil pump and check pressure
 Try out the engine on air in concern with bridge for
ahead and astern direction
 Put telegraph in "Ahead position" and give the
starting air. Check all the cylinder indicator cocks
for any sign of water.
 Repeat the above point for the "Astern direction" to
check the reversing system.
 Start fuel oil pump and auxiliary blowers.
 When bridge is ready, follow the telegraph orders
and start engine on air and fuel.
 Check all the parameters and feel the condition.
 Check firing of fuel injector by feeling the jerk on
the high pressure pipe.
 Check air starting valve for leakage by sensing the
temperature of the air pipe before the valve.
 Check exhaust valve operation and its rotation. For
Sulzer engine, sight glass is provided and for MAN
engine, indicator is provided to check rotation.
Check cylinder lubricators for proper working.
 Check flow of piston cooling oil.
 Check pressure difference in turbocharger and air
cooler.
 Check under piston and crankcase temperature.

--

Free Download & Buy Online via Secure Paypal 
or Fill Order Form.

4:29 AM

H.265 Standard Approved

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
ITU members approved H.265 video compression standard, known informally as ‘High Efficiency Video Coding’ (HEVC), and considered to be twice more effective than the widely adopted now H.264. The approval is believed to pave the way for 4K video devices, HDR features in video and more.

The new standard includes a ‘Main’ profile that supports 8-bit 4:2:0 video, a ‘Main 10’ profile with 10-bit support, and a ‘Main Still Picture’ profile for still image coding that employs the same coding tools as a video ‘intra’ picture.

The ITU/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) will continue work on a range of extensions to HEVC, including support for 12-bit video as well as 4:2:2 and 4:4:4 chroma formats. Another important element of this work will be the progression of HEVC towards scalable video coding. The three bodies will also work within the Joint Collaborative Team on 3D-Video (JCT-3V) on the extension of HEVC towards stereoscopic and 3D video coding.
12:32 PM

London Image Sensor Conference Announces Agenda, Interviews Pelican Imaging CTO

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
Business Wire: Image Sensors conference (IS2013) have released its full agenda for 2013. Jim DeFilippis, the former EVP Digital Television Technologies and Standards at Fox TV, and one of the keynote speakers for IS2013 is to discuss the duality of image sensor and display technology development in 3D broadcast technology. His presentation is set to include his experiences from the London 2012 Olympics 3D broadcast.

The other keynote speakers at IS2013 include; Dr Howard E Rhodes, CTO, OMNIVISION, USA. Dr Junichi Nakamura, Director, Japan Design Centre, APTINA Japan, Japan. Alan Roberts, Colour Science Consultant (former BBC R&D), UK. Prof Franco Zappa, POLIMI, Italy

The pre-conference workshops will be led by Prof Edoardo Charbon, TU Delft, The Netherlands and Nicolas Touchard DxO Labs, France and will focus around Single-Photon Imaging - Technology Overview and Focus on Medical Applications and testing and Optimization of Image Sensor Performance.

The conference site also published the interview with Kartik Venkataraman, Pelican Imaging Founder and CTO.

Q. What are the novel applications for [the multi-aperture] image capture in a camera phone application?

A. "Clearly the biggest advantage of this approach is that you are getting not just an image of the scene but also its depth. The camera array needs to be seen as a both an imaging device and a 3D acquisition device. The technology is passive, low light capable, small enough to fit into the mobile device one carries around, and produces high quality high resolution images. From that point of view, it allows one to imagine all sorts of capabilities given the availability of a high resolution depth map along with the high resolution image. Besides synthetic refocus (in post capture still and live video) some of the applications would be distance measurement, scene segmentation, object level manipulation and filtering as well as 3D modeling and just about anything that can be further enhanced with the availability of a depth map."
12:14 PM

HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION

HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION (marinenotesonline.blogspot.com)

ELECTRICAL ENGINEERING CATHODIC PROTECTION
CONTENTS
Page
Section 1 INTRODUCTION
1.1 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Related Technical Documents. . . . . . . . . . . . . . . . . 1
Section 2 CATHODIC PROTECTION CONCEPTS
2.1 Corrosion as an Electrochemical Process. . . . . . . . . . . 3
2.1.1 Driving Force. . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The Electrochemical Cell. . . . . . . . . . . . . . . . . . . 3
2.1.2.1 Components of the Electrochemical Cell. . . . . . . . . . . . 3
2.1.2.2 Reactions in an Electrochemical Cell. . . . . . . . . . . . . 3
2.2 The Electrochemical Basis for Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Potentials Required for Cathodic Protection. . . . . . . . . 4
2.3 Practical Application of Cathodic Protection. . . . . . . . . 5
2.3.1 When Cathodic Protection Should Be Considered. . . . . . . . 5
2.3.1.1 Where Feasible. . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1.2 When Indicated By Experience. . . . . . . . . . . . . . . . . 5
2.3.1.3 As Required By Regulation. . . . . . . . . . . . . . . . . . 5
2.3.2 Functional Requirements for Cathodic Protection . . . . . . . 8
2.3.2.1 Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.2 Electrolyte. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.3 Source of Current. . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.4 Connection to Structure. . . . . . . . . . . . . . . . . . . 8
2.4 Sacrificial Anode Systems. . . . . . . . . . . . . . . . . . 8
2.4.1 Anode Materials. . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Connection to Structure. . . . . . . . . . . . . . . . . . . 10
2.4.3 Other Requirements. . . . . . . . . . . . . . . . . . . . . . 10
2.5 Impressed Current Systems. . . . . . . . . . . . . . . . . . 10
2.5.1 Anode Materials. . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Direct Current Power Source. . . . . . . . . . . . . . . . . 10
2.5.3 Connection to Structure. . . . . . . . . . . . . . . . . . . 10
2.5.4 Other Requirements. . . . . . . . . . . . . . . . . . . . . . 11
Section 3 CRITERIA FOR CATHODIC PROTECTION
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Electrical Criteria. . . . . . . . . . . . . . . . . . . . . 13
3.3 Interpretation of Structure-to-Electrolyte
Potential Readings. . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 National Association of Corrosion Engineers
(NACE)Standard RP-01-69. . . . . . . . . . . . . . . . . . . 13
3.3.1.1 Criteria for Steel. . . . . . . . . . . . . . . . . . . . . . 15
3.3.1.2 Criteria for Aluminum. . . . . . . . . . . . . . . . . . . . 15
3.3.1.3 Criteria for Copper. . . . . . . . . . . . . . . . . . . . . 15
3.3.1.4 Criteria for Dissimilar Metal Structures. . . . . . . . . . . 15
3.3.2 Other Electrical Criteria. . . . . . . . . . . . . . . . . . 15
3.3.2.1 Criteria for Lead. . . . . . . . . . . . . . . . . . . . . . 16
3.3.2.2 NACE RP-02-85. . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Failure Rate Analysis. . . . . . . . . . . . . . . . . . . . 16
3.5 Nondestructive Testing of Facility. . . . . . . . . . . . . . 16
3.5.1 Visual Analysis. . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Consequences of Underprotection. . . . . . . . . . . . . . . 17
3.7 Consequences of Overprotection. . . . . . . . . . . . . . . . 18
3.7.1 Coating Disbondment. . . . . . . . . . . . . . . . . . . . . 18
3.7.2 Hydrogen Embrittlement. . . . . . . . . . . . . . . . . . . . 18
Section 4 CATHODIC PROTECTION SYSTEM DESIGN PRINCIPLES
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 General Design Procedures. . . . . . . . . . . . . . . . . . 19
4.2.1 Drawings and Specifications. . . . . . . . . . . . . . . . . 19
4.2.1.1 Drawings and Specifications for the Structure to
be Protected. . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1.2 Site Drawings. . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Field Surveys. . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.1 Water Analysis. . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.2 Soil Characteristics. . . . . . . . . . . . . . . . . . . . . 20
4.2.2.3 Current Requirement Tests. . . . . . . . . . . . . . . . . . 21
4.2.2.4 Location of Other Structures in the Area. . . . . . . . . . . 22
4.2.2.5 Availability of ac Power. . . . . . . . . . . . . . . . . . . 22
4.2.3 Current Requirements. . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Choice of Sacrificial or Impressed Current
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Basic Design Procedure for Sacrificial Anode
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Basic Design Procedure for Impressed Current
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.6.1 Total Current Determination. . . . . . . . . . . . . . . . . 24
4.2.6.2 Total Resistance Determination. . . . . . . . . . . . . . . . 26
4.2.6.3 Voltage and Rectifier Determination. . . . . . . . . . . . . 27
4.2.7 Analysis of Design Factors. . . . . . . . . . . . . . . . . . 28
4.3 Determination of Field Data. . . . . . . . . . . . . . . . . 28
4.3.1 Determination of Electrolyte Resistivity . . . . . . . . . . 29
4.3.1.1 In Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1.2 Liquids. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Chemical Analysis of the Environment . . . . . . . . . . . . 31
4.3.2.1 pH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Coating Conductance. . . . . . . . . . . . . . . . . . . . . 31
4.3.3.1 Short Line Method. . . . . . . . . . . . . . . . . . . . . . 33
4.3.3.2 Long Line Method. . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Continuity Testing. . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.1 Method 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.2 Method 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.3 Method 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.5 Insulation Testing. . . . . . . . . . . . . . . . . . . . . . 35
4.3.5.1 Buried Structures. . . . . . . . . . . . . . . . . . . . . . 35
4.3.5.2 Aboveground Structures. . . . . . . . . . . . . . . . . . . . 38
4.4 Corrosion Survey Checklist. . . . . . . . . . . . . . . . . . 38
Section 5 PRECAUTIONS FOR CATHODIC PROTECTION SYSTEM DESIGN
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Excessive Currents and Voltages. . . . . . . . . . . . . . . 39
5.2.1 Interference. . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1.1 Detecting Interference. . . . . . . . . . . . . . . . . . . . 41
5.2.1.2 Control of Interference - Anode Bed Location. . . . . . . . . 43
5.2.1.3 Control of Interference - Direct Bonding. . . . . . . . . . . 43
5.2.1.4 Control of Interference - Resistive Bonding. . . . . . . . . 45
5.2.1.5 Control of Interference - Sacrificial Anodes. . . . . . . . . 47
5.2.2 Effects of High Current Density. . . . . . . . . . . . . . . 47
5.2.3 Effects of Electrolyte pH. . . . . . . . . . . . . . . . . . 47
5.3 Hazards Associated with Cathodic Protection. . . . . . . . . 49
5.3.1 Explosive Hazards. . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Bonding for Electrical Safety. . . . . . . . . . . . . . . . 49
5.3.3 Induced Alternating Currents. . . . . . . . . . . . . . . . . 50
Section 6 IMPRESSED CURRENT SYSTEM
6.1 Advantages of Impressed Current Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 53
6.2 Determination of Circuit Resistance. . . . . . . . . . . . . 53
6.2.1 Anode-to-Electrolyte Resistance. . . . . . . . . . . . . . . 53
6.2.1.1 Effect on System Design and Performance. . . . . . . . . . . 53
6.2.1.2 Calculation of Anode-to-Electrolyte Resistance . . . . . . . 54
6.2.1.3 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1.4 Simplified Expressions for Common Situations. . . . . . . . . 55
6.2.1.5 Field Measurement. . . . . . . . . . . . . . . . . . . . . . 57
6.2.1.6 Effect of Backfill. . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Structure-to-Electrolyte Resistance. . . . . . . . . . . . . 59
6.2.3 Connecting Cable Resistance. . . . . . . . . . . . . . . . . 59
6.2.4 Resistance of Connections and Splices. . . . . . . . . . . . 59
6.3 Determination of Power Supply Requirements. . . . . . . . . . 59
6.4 Selection of Power Supply Type. . . . . . . . . . . . . . . . 60
6.4.1 Rectifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 Thermoelectric Generators. . . . . . . . . . . . . . . . . . 60
6.4.3 Solar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.4 Batteries. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.5 Generators. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Rectifier Selection. . . . . . . . . . . . . . . . . . . . . 60
6.5.1 Rectifier Components. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.1 Transformer Component. . . . . . . . . . . . . . . . . . . . 61
6.5.1.2 Rectifying Elements. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.3 Overload Protection. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.4 Meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5.2 Standard Rectifier Types . . . . . . . . . . . . . . . . . . 63
6.5.2.1 Single-Phase Bridge. . . . . . . . . . . . . . . . . . . . . 63
6.5.2.2 Single-Phase Center Tap. . . . . . . . . . . . . . . . . . . 63
6.5.2.3 Three-Phase Bridge. . . . . . . . . . . . . . . . . . . . . . 63
6.5.2.4 Three-Phase Wye. . . . . . . . . . . . . . . . . . . . . . . 65
6.5.2.5 Special Rectifier Types . . . . . . . . . . . . . . . . . . . 65
6.5.3 Rectifier Selection and Specifications. . . . . . . . . . . . 68
6.5.3.1 Available Features. . . . . . . . . . . . . . . . . . . . . . 69
6.5.3.2 Air Cooled Versus Oil Immersed. . . . . . . . . . . . . . . . 69
6.5.3.3 Selecting ac Voltage. . . . . . . . . . . . . . . . . . . . . 70
6.5.3.4 dc Voltage and Current Output. . . . . . . . . . . . . . . . 70
6.5.3.5 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.3.6 Explosion Proof Rectifiers. . . . . . . . . . . . . . . . . . 70
6.5.3.7 Lightning Arresters. . . . . . . . . . . . . . . . . . . . . 71
6.5.3.8 Selenium Versus Silicon Stacks. . . . . . . . . . . . . . . . 71
6.5.3.9 Other Options. . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.3.10 Rectifier Alternating Current Rating. . . . . . . . . . . . . 71
6.6 Anodes for Impressed Current Systems. . . . . . . . . . . . . 73
6.6.1 Graphite Anodes. . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.1 Specifications. . . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.2 Available Sizes. . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.3 Characteristics. . . . . . . . . . . . . . . . . . . . . . . 77
6.6.1.4 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6.2 High Silicon Cast Iron. . . . . . . . . . . . . . . . . . . . 78
6.6.3 High Silicon Chromium Bearing Cast Iron
(HSCBCI). . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.3.1 Specifications. . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.3.2 Available Sizes. . . . . . . . . . . . . . . . . . . . . . . 79
6.6.3.3 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.4 Aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.5 Platinum. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.6 Platinized Anodes. . . . . . . . . . . . . . . . . . . . . . 79
6.6.6.1 Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.6.2 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6.7 Alloyed Lead. . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Other System Components. . . . . . . . . . . . . . . . . . . 91
6.7.1 Connecting Cables. . . . . . . . . . . . . . . . . . . . . . 91
6.7.1.1 Factors to be Considered. . . . . . . . . . . . . . . . . . . 91
6.7.1.2 Insulation. . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7.1.3 Recommended Cables for Specific Applications. . . . . . . . . 93
6.7.1.4 Economic Wire Size. . . . . . . . . . . . . . . . . . . . . . 93
6.7.2 Wire Splices and Connections. . . . . . . . . . . . . . . . . 94
6.7.3 Test Stations. . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.4 Bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.5 Insulating Joints. . . . . . . . . . . . . . . . . . . . . . 96
Section 7 SACRIFICIAL ANODE SYSTEM DESIGN
7.1 Theory of Operation. . . . . . . . . . . . . . . . . . . . . 113
7.1.1 Advantages of Sacrificial Anode Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 113
7.1.2 Disadvantages of Sacrificial Anode Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 113
7.2 Sacrificial Anode Cathodic Protection System
DesignProcedures. . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Determination of Current Required for
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Determination of Anode Output. . . . . . . . . . . . . . . . 114
7.4.1 Simplified Method for Common Situations. . . . . . . . . . . 114
7.4.2 Determination of Output Using
Anode-to-Electrolyte Resistance. . . . . . . . . . . . . . . 114
7.4.2.1 Calculation of Anode-to-Electrolyte Resistance. . . . . . . . 114
7.4.2.2 Determination of Structure-to-Electrolyte
Resistance. . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.2.3 Connecting Cable Resistance. . . . . . . . . . . . . . . . . 115
7.4.2.4 Resistance of Connections and Splices. . . . . . . . . . . . 115
7.4.2.5 Total Circuit Resistance. . . . . . . . . . . . . . . . . . . 115
7.4.2.6 Anode-to-Structure Potential. . . . . . . . . . . . . . . . . 115
7.4.2.7 Anode Output Current. . . . . . . . . . . . . . . . . . . . . 115
7.4.3 Field Measurement of Anode Output. . . . . . . . . . . . . . 116
7.5 Determination of Number of Anodes Required. . . . . . . . . . 116
7.6 Determination of Anode Life. . . . . . . . . . . . . . . . . 116
7.7 Seasonal Variation in Anode Output. . . . . . . . . . . . . . 117
7.8 Sacrificial Anode Materials . . . . . . . . . . . . . . . . . 117
7.8.1 Magnesium. . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.8.1.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.8.1.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 118
7.8.1.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.6 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.2 Zinc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.2.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.2.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.2.6 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.3 Aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.3.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 127
7.9 Other System Components . . . . . . . . . . . . . . . . . . . 127
7.9.1 Connecting Wires. . . . . . . . . . . . . . . . . . . . . . . 127
7.9.1.1 Determination of Connecting Wire Size and Type. . . . . . . . 133
7.9.2 Connections and Splices. . . . . . . . . . . . . . . . . . . 134
7.9.3 Bonds and Insulating Joints. . . . . . . . . . . . . . . . . 134
7.9.4 Test Station Location and Function. . . . . . . . . . . . . . 134
7.9.5 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Section 8 TYPICAL CATHODIC PROTECTION
8.1 Diagrams of Cathodic Protection Systems. . . . . . . . . . . 137
Section 9 CATHODIC PROTECTION SYSTEM DESIGN EXAMPLES
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Elevated Steel Water Tank. . . . . . . . . . . . . . . . . . 155
9.2.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 156
9.3 Elevated Water Tank (Where Ice is Expected). . . . . . . . . 173
9.3.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4 Steel Gas Main. . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 180
9.5 Gas Distribution System. . . . . . . . . . . . . . . . . . . 184
9.5.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.5.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 185
9.6 Black Iron, Hot Water Storage Tank. . . . . . . . . . . . . . 187
9.6.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.6.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 188
9.7 Underground Steel Storage Tank. . . . . . . . . . . . . . . . 190
9.7.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.7.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8 Heating Distribution System. . . . . . . . . . . . . . . . . 192
9.8.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 193
9.8.3 Groundbed Design . . . . . . . . . . . . . . . . . . . . . . 194
9.8.4 Rectifier Location. . . . . . . . . . . . . . . . . . . . . . 195
9.9 Aircraft Multiple Hydrant Refueling System. . . . . . . . . . 195
9.9.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.9.2 Computations. . . . . . . . . . . . . . . . . . . . . . . . . 196
9.10 Steel Sheet Piling in Seawater (Galvanic nodes). . . . . . . 199
9.10.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.10.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 201
9.11 Steel Sheet Piling in Seawater (Impressed
Current
9.11.1 Design Data. . . . . . . . . . . . . . . . . . . . . . . . . 203
9.11.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 203
9.12 Steel H Piling in Seawater (Galvanic Anodes). . . . . . . . . 207
9.12.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.12.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 208
9.13 Steel H Piling in Seawater (Impressed Current). . . . . . . . 210
9.13.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.13.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 210
Section 10 INSTALLATION AND CONSTRUCTION PRACTICES
10.1 Factors to Consider. . . . . . . . . . . . . . . . . . . . . 213
10.2 Planning of Construction. . . . . . . . . . . . . . . . . . . 213
10.3 Pipeline Coating. . . . . . . . . . . . . . . . . . . . . . . 213
10.3.1 Over-the-Ditch Coating. . . . . . . . . . . . . . . . . . . . 213
10.3.2 Yard Applied Coating. . . . . . . . . . . . . . . . . . . . . 213
10.3.3 Joint and Damage Repair. . . . . . . . . . . . . . . . . . . 214
10.3.4 Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.4 Coatings for Other Structures. . . . . . . . . . . . . . . . 214
10.5 Pipeline Installation. . . . . . . . . . . . . . . . . . . . 214
10.5.1 Casings. . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.5.2 Foreign Pipeline Crossings. . . . . . . . . . . . . . . . . . 215
10.5.3 Insulating Joints. . . . . . . . . . . . . . . . . . . . . . 215
10.5.4 Bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.6 Electrical Connections. . . . . . . . . . . . . . . . . . . . 216
10.7 Test Stations. . . . . . . . . . . . . . . . . . . . . . . . 216
10.8 Sacrificial Anode Installation. . . . . . . . . . . . . . . . 216
10.8.1 Vertical. . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.8.2 Horizontal. . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.9 Impressed Current Anode Installation. . . . . . . . . . . . . 217
10.9.1 Vertical. . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.9.2 Horizontal. . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.9.3 Deep Anode Beds. . . . . . . . . . . . . . . . . . . . . . . 219
10.9.4 Other Anode Types. . . . . . . . . . . . . . . . . . . . . . 225
10.9.5 Connections. . . . . . . . . . . . . . . . . . . . . . . . . 225
10.10 Impressed Current Rectifier Installation. . . . . . . . . . . 225
Section 11 SYSTEM CHECKOUT AND INITIAL ADJUSTMENTS
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 229
11.2 Initial Potential Survey. . . . . . . . . . . . . . . . . . . 229
11.3 Detection and Correction of Interference. . . . . . . . . . . 229
11.4 Adjustment of Impressed Current Systems. . . . . . . . . . . 229
11.4.1 Uneven Structure-To-Electrolyte Potentials. . . . . . . . . . 229
11.4.2 Rectifier Voltage and Current Capacity. . . . . . . . . . . . 230
11.5 Adjustment of Sacrificial Anode Systems. . . . . . . . . . . 230
11.5.1 Low Anode Current Levels. . . . . . . . . . . . . . . . . . . 230
11.5.2 Inadequate Protection at Designed Current Levels . . . . . . 230
Section 12 MAINTAINING CATHODIC PROTECTION
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 231
12.2 Required Periodic Monitoring and Maintenance. . . . . . . . . 231
12.3 Design Data Required for System Maintenance. . . . . . . . . 231
12.3.1 Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2 System Data. . . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.1 Design Potentials. . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.2 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.3 System Settings and Potential Readings. . . . . . . . . . . . 231
12.3.2.4 Rectifier Instructions. . . . . . . . . . . . . . . . . . . . 232
12.4 Basic Maintenance Requirements. . . . . . . . . . . . . . . . 232
12.5 Guidance for Maintenance . . . . . . . . . . . . . . . . . . 232
12.5.1 Agency Maintenance and Operations Manuals. . . . . . . . . . 232
12.5.2 DOT Regulations. . . . . . . . . . . . . . . . . . . . . . . 235
12.5.3 NACE Standards. . . . . . . . . . . . . . . . . . . . . . . . 235
Section 13 ECONOMIC ANALYSIS
13.1 Importance of Economic Analysis. . . . . . . . . . . . . . . 237
13.2 Economic Analysis Process. . . . . . . . . . . . . . . . . . 237
13.2.1 Define the Objective. . . . . . . . . . . . . . . . . . . . . 237
13.2.2 Generate Alternatives. . . . . . . . . . . . . . . . . . . . 238
13.2.3 Formulate Assumptions. . . . . . . . . . . . . . . . . . . . 238
13.2.4 Determine Costs and Benefits. . . . . . . . . . . . . . . . . 238
13.2.4.1 Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.2.4.2 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.2.5 Compare Costs and Benefits and Rank
Alternatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.2.6 Perform Sensitivity Analysis. . . . . . . . . . . . . . . . . 239
13.3 Design of Cathodic Protection Systems. . . . . . . . . . . . 239
13.4 Economic Analysis - Example 1 . . . . . . . . . . . . . . . . 240
13.4.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 240
13.4.4.1 Cost - Alternative 1--Steel Line Without
Cathodic Protection. . . . . . . . . . . . . . . . . . . . . 240
13.4.4.2 Cost - Alternative 2--Steel Line with Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.4.4.3 Cost - Alternative 3--Plastic Line. . . . . . . . . . . . . . 242
13.4.4.4 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.4.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 243
13.5 Economic Analysis - Example 2 . . . . . . . . . . . . . . . . 243
13.5.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.2 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 244
13.5.4.1 Cost - Alternative 1--Steel Line Without
Cathodic Protection. . . . . . . . . . . . . . . . . . . . . 244
13.5.4.2 Cost - Alternative 2--Steel Line With Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.5.4.3 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.5.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 246
13.5.6 Conclusions and Recommendations. . . . . . . . . . . . . . . 247
13.6 Economic Analysis - Example 3 . . . . . . . . . . . . . . . . 247
13.6.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 247
13.6.4.1 Cost - Alternative 1--Impressed Current Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.4.2 Cost - Alternative 2--Galvanic Anode System. . . . . . . . . 248
13.6.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 249
13.7 Economic Analysis - Example 4 . . . . . . . . . . . . . . . . 249
13.7.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 249
13.7.4.1 Cost - Alternative 1--Cathodic Protection System
Maintenance Continued. . . . . . . . . . . . . . . . . . . 249
13.7.4.2 Cost - Alternative 2--Cathodic Protection System
Maintenance Discontinued. . . . . . . . . . . . . . . . . . 250
13.7.5 Compare Benefits and Costs . . . . . . . . . . . . . . . . . 251
13.8 Economic Analysis Goal. . . . . . . . . . . . . . . . . . . . 251
Section 14 CORROSION COORDINATING COMMITTEE PARTICIPATION
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 253
14.2 Functions of Corrosion Coordinating Committees. . . . . . . . 253
14.3 Operation of the Committees. . . . . . . . . . . . . . . . . 253
14.4 Locations of Committees. . . . . . . . . . . . . . . . . . . 253
APPENDIX
APPENDIX A UNDERGROUND CORROSION SURVEY CHECKLIST . . . . . . . . . . . 255
B ECONOMIC LIFE GUIDELINES . . . . . . . . . . . . . . . . . . 265
C PROJECT YEAR DISCOUNT FACTORS . . . . . . . . . . . . . . . . 267
D PRESENT VALUE FORMULAE . . . . . . . . . . . . . . . . . . . 269
E DOT REGULATIONS . . . . . . . . . . . . . . . . . . . . . . . 271
Figure 1 The Electrochemical Cell . . . . . . . . . . . . . . . . . . 6
2 Corrosion Cell - Zinc and Platinum
in Hydrochloric Acid . . . . . . . . . . . . . . . . . . . 6
3 Cathodic Protection Cell . . . . . . . . . . . . . . . . . . 7
4 Hydraulic Analogy of Cathodic Protection . . . . . . . . . . 7
5 Sacrificial Anode Cathodic Protection/Impressed
Current Cathodic Protection . . . . . . . . . . . . . . . . 9
6 Structure-to Electrolyte Potential Measurement . . . . . . . 14
7 Failure Rate Versus Time . . . . . . . . . . . . . . . . . . 17
8 Temporary Cathodic Protection System for
Determining Current Requirements . . . . . . . . . . . . . 23
9 4-Pin Soil Resistivity Measurement . . . . . . . . . . . . . 30
10 Soil Box for Determination of Resistivity . . . . . . . . . . 30
11 pH Meter . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12 Antimony Electrode Potential Versus pH . . . . . . . . . . . 32
13 Coating Conductance - Short Line Method . . . . . . . . . . . 34
14 Coating Conductance - Long Line Method . . . . . . . . . . . 34
15 Continuity Testing - Potential Method . . . . . . . . . . . . 36
16 Continuity Testing - Potential Drop Method . . . . . . . . . 36
17 Continuity Testing - Pipe Locator Method . . . . . . . . . . 37
18 Insulation Testing - Two-Wire Test Station . . . . . . . . . 37
19 Interference from Impressed Current
Cathodic Protection System . . . . . . . . . . . . . . . . 40
20 Interference Due to Potential Gradients . . . . . . . . . . . 41
21 Interference Testing . . . . . . . . . . . . . . . . . . . . 42
22 Plot of Potentials from Interference Test . . . . . . . . . . 42
23 Measurement of Current Flow in Structure . . . . . . . . . . 44
24 Correction of Interferencce - Direct Bonding . . . . . . . . 44
25 Correction of Interference - Resistive Bonding . . . . . . . 45
26 Effects of Bonding on Interference Test
Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
27 Bonding for Continuity . . . . . . . . . . . . . . . . . . . 48
28 Control of Interference - Sacrificial Anode . . . . . . . . . 48
29 Interference Due to Cathodic Protection of
Quaywall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
30 Correction of Interference - Bonding . . . . . . . . . . . . 51
31 Equavalent Cathodic Protection Circuit . . . . . . . . . . . 54
32 Single-Phase - Full-Wave Bridge Rectifier . . . . . . . . . . 62
33 Full-Wave Rectified Current . . . . . . . . . . . . . . . . . 64
34 Single-Phase - Center Tap Circuit . . . . . . . . . . . . . . 64
35 Three-Phase Bridge Circuit . . . . . . . . . . . . . . . . . 65
36 Three-Phase Wye Circuit . . . . . . . . . . . . . . . . . . . 66
37 Half-Wave Rectified Current . . . . . . . . . . . . . . . . . 66
38 Constant Current Rectifier . . . . . . . . . . . . . . . . . 67
39 Constant Potential Rectifier . . . . . . . . . . . . . . . . 67
40 Multicircuit Constant Current Rectifier . . . . . . . . . . . 68
41 Efficiency Versus Voltage - Selenium Stacks . . . . . . . . . 72
42 Efficiency Versus Voltage - Silicon Stacks . . . . . . . . . 73
43 Anode-to-Cable Connection - Graphite Anode . . . . . . . . . 75
44 Center Connected Graphite Anode . . . . . . . . . . . . . . . 76
45 Duct Anode . . . . . . . . . . . . . . . . . . . . . . . . . 83
46 Button Anode . . . . . . . . . . . . . . . . . . . . . . . . 83
47 Bridge Deck Anode - Type I . . . . . . . . . . . . . . . . . 84
48 Bridge Deck Anode - Type II . . . . . . . . . . . . . . . . . 85
49 Tubular Anode . . . . . . . . . . . . . . . . . . . . . . . . 86
50 Anode to Cable Connection - Epoxy Seal . . . . . . . . . . . 87
51 Anode to Cable Connection - Teflon Seal . . . . . . . . . . . 88
52 Center Connected High Silicon Chromium
Bearing Cast Iron Anode . . . . . . . . . . . . . . . . . . 89
53 Typical Platinized Anode . . . . . . . . . . . . . . . . . . 90
54 Flush-Mounted Potential Test Station . . . . . . . . . . . . 97
55 Soil Contact Test Station . . . . . . . . . . . . . . . . . . 98
56 IR Drop Test Station . . . . . . . . . . . . . . . . . . . . 99
57 Insulating Flange Test Station (Six-Wire) . . . . . . . . . . 100
58 Wiring for Casing Isolation Test Station . . . . . . . . . . 101
59 Bond Test Station . . . . . . . . . . . . . . . . . . . . . . 101
60 Anode Balancing Resistors . . . . . . . . . . . . . . . . . . 102
61 Bonding of a Dresser-Style Coupling . . . . . . . . . . . . . 103
62 Bonding Methods for Cast Iron Bell-and-Spigot
Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
63 Isolating a Protected Line from an Unprotected
Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
64 Electrical Bond . . . . . . . . . . . . . . . . . . . . . . . 106
65 Thermosetting-Resin Pipe Connection . . . . . . . . . . . . . 106
66 Clamp Type Bonding Joint . . . . . . . . . . . . . . . . . . 107
67 Underground Splice . . . . . . . . . . . . . . . . . . . . . 108
68 Welded Type Bonding Joint for Slip-On
Pipe Installed Aboveground . . . . . . . . . . . . . . . . 109
69 Test Box for an Insulating Fitting . . . . . . . . . . . . . 110
70 Steel Insulating Joint Details for Flanged
Pipe Installed Below Grade . . . . . . . . . . . . . . . . 111
71 Steel Insulating Joint Details for Aboveground
Flanged Pipe . . . . . . . . . . . . . . . . . . . . . . . 112
72 Insulating Joint Details for Screwed Pipe
Connections . . . . . . . . . . . . . . . . . . . . . . . . 112
73 Efficiency Versus Current Density - Magnesium
Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . 118
74 Aluminum Alloy Bracelet Anodes . . . . . . . . . . . . . . . 133
75 Current-Potential Test Station . . . . . . . . . . . . . . . 135
76 Typical Building Underground Heat & Water Lines . . . . . . . 138
77 Impressed Current Point Type Cathodic Protection
for Aircraft Hydrant Refueling System . . . . . . . . . . . . 138
78 Galvanic Anode Type Cathodic Protection for
Coated Underground Sewage Lift Station . . . . . . . . . . . 139
79 Zinc Anode on Reinforced Concrete Block . . . . . . . . . . . 140
80 Radiant Heat or Snow-Melting Piping . . . . . . . . . . . . . 141
81 Cathodic Protection of Foundation Piles . . . . . . . . . . . 142
82 Impressed Current Cathodic Protection for
Existing On-Grade Storage Tank . . . . . . . . . . . . . . 142
83 Impressed Current Cathodic Protection with
Horizontal Anodes for On-Grade Storage Tank - New
Installation . . . . . . . . . . . . . . . . . . . . . . . 143
84 On-Grade Fresh Water Tank Using Suspended Anodes . . . . . . 144
85 Open Water Box Cooler . . . . . . . . . . . . . . . . . . . . 144
86 Horizontal Hot Water Tank - Magnesium Anode
Installation . . . . . . . . . . . . . . . . . . . . . . . 145
87 Impressed Current Cathodic Protection System for
Sheet Piling for Wharf Construction . . . . . . . . . . . . 146
88 Suspended Anode Cathodic Protection for H-Piling
in Seawater . . . . . . . . . . . . . . . . . . . . . . . . . 146
89 Cathodic Protection for H-Piling in Seawater . . . . . . . . 147
90 Cellular Earth Fill Pier Supports . . . . . . . . . . . . . . 148
91 Elevated Fresh Water Tank Using Suspended Anodes . . . . . . 149
92 Cathodic Protection of Tanks using Rigid
Floor-Mounted Anodes . . . . . . . . . . . . . . . . . . . 150
93 Cathodic Protection of Hydraulic Elevator
Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . 151
94 Hydraulic Hoist Cylinder . . . . . . . . . . . . . . . . . . 152
95 Typical Cathodic Protection of Underground Tank
Farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
96 Gasoline Service Station System . . . . . . . . . . . . . . . 154
97 Segmented Elevated Tank for Area Calculations . . . . . . . . 157
98 Anode Spacing for Elevated Steel Water Tank . . . . . . . . . 160
99 Anode Suspension Arrangement for Elevated
Steel Water Tank . . . . . . . . . . . . . . . . . . . . . 162
100 Equivalent Diameter for Anodes in a
Circle in Water Tank . . . . . . . . . . . . . . . . . . . 163
101 Fringe Factor for Stub Anodes . . . . . . . . . . . . . . . . 164
102 Elevated Steel Water Tank Showing Rectifier and
Anode Arrangement . . . . . . . . . . . . . . . . . . . . . 172
103 Hand Hole and Anode Suspension Detail for
Elevated Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . 174
104 Riser Anode Suspension Detail for Elevated Water
Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
105 Dimensions: Elevated Steel Water Tank . . . . . . . . . . . 175
106 Cathodic Protection for Tanks Using Rigid Mounted . . . . . . 178
Button-Type Anodes and Platinized Titanium Wire
107 Cathodic Protection System for Gas Main . . . . . . . . . . . 179
108 Layout of Gas Piping in Residential District . . . . . . . . 184
109 Cathodic Protection for Black Iron, Hot Water
Storage Tank . . . . . . . . . . . . . . . . . . . . . . . . 187
110 Galvanic Anode Cathodic Protection of
Underground Steel Storage Tank . . . . . . . . . . . . . . . 191
111 Impressed Current Cathodic Protection for
Heating Conduit System . . . . . . . . . . . . . . . . . . . . . . . . 193
112 Galvanic Anode Cathodic Protection for Hydrant
Refueling System . . . . . . . . . . . . . . . . . . . . . . 197
113 Galvanic Anode Cathodic Protection System for
Steel Sheet Piling Bulkhead . . . . . . . . . . . . . . . . . 200
114 Impressed Current Cathodic Protection System
for Steel Sheet Piling Bulkhead . . . . . . . . . . . . . . . 207
115 Pier Supported by H Piling for Para. 9.12 . . . . . . . . . . 208
116 Test Station for Under-Road Casing Isolation . . . . . . . . 215
117 Vertical Sacrificial Anode Installation . . . . . . . . . . . 217
118 Horizontal Sacrificial Anode Installation When
Obstruction is Encountered . . . . . . . . . . . . . . . . 218
119 Horizontal Sacrificial Anode Installation -
Limited Right-of-Way . . . . . . . . . . . . . . . . . . . 218
120 Vertical HSCBCI Anode Installation . . . . . . . . . . . . . 220
121 Vertical HSCBCI Anode Installation With Packaged
Backfill . . . . . . . . . . . . . . . . . . . . . . . . . 221
122 Horizontal HSCBCI Anode Installation . . . . . . . . . . . . 222
123 Typical Deep Well Anode Cathodic Protection
Installation . . . . . . . . . . . . . . . . . . . . . . . 223
124 Deep Anode Installation Details . . . . . . . . . . . . . . . 224
125 Typical Pole-Mounted Cathodic Protection
Rectifier Installation . . . . . . . . . . . . . . . . . . 226
126 Typical Pad-Mounted Cathodic Protection
Rectifier Installation . . . . . . . . . . . . . . . . . . 227
127 Form for Recording and Reporting Monthly
Rectifier Readings . . . . . . . . . . . . . . . . . . . . . 233
128 Form for Recording and Reporting Quarterly
Structure-to-Electrode Potentials . . . . . . . . . . . . 234
TABLES
Table 1 Current Requirements for Cathodic Protection of
Bare Steel . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Current Requirements for Cathodic Protection of
Coated Steel . . . . . . . . . . . . . . . . . . . . . . . 21
3 Galvanic Anode Size Factors . . . . . . . . . . . . . . . . . 25
4 Structure Potential Factor . . . . . . . . . . . . . . . . . 26
5 Adjusting Factor for Multiple Anodes (F) . . . . . . . . . . 27
6 Corrections Factors - Short Line Coating Conductance . . . . 33
7 Results of Structure-to-Electrolyte
Potential Measurements . . . . . . . . . . . . . . . . . . 43
8 Standard HSCBCI Anodes . . . . . . . . . . . . . . . . . . . 80
9 Special HSCBCI Anodes . . . . . . . . . . . . . . . . . . . . 82
10 Standard Wire Characteristics . . . . . . . . . . . . . . . . 92
11 M Factors for Determining Economic Wire Size
(Cost of losses in 100 feet of copper cable
at 1 cent per kWhr) . . . . . . . . . . . . . . . . . . . . 95
12 Standard Alloy Magnesium Anodes - Standard
Sizes for Use in Soil . . . . . . . . . . . . . . . . . . . 120
13 Standard Alloy Magnesium Anodes - Standard
Sizes for Use in Water . . . . . . . . . . . . . . . . . . 121
14 Standard Alloy Magnesium Anodes -Standard
Sizes for Condensors and Heat Exchangers . . . . . . . . . 121
15 Standard Alloy Magnesium Anodes - Elongated . . . . . . . . . 122
16 High Potential Alloy Magnesium Anodes - Standard
Sizes for Soil and Water . . . . . . . . . . . . . . . . . 122
17 Standard Alloy Magnesium Anodes - Standard Size
Extruded Rod for Water Tanks and Water Heaters . . . . . . 123
18 Zinc Anodes - Standard Sizes for Underground or
Fresh Water . . . . . . . . . . . . . . . . . . . . . . . . 123
19 Zinc Anodes - Special Sizes for Underground or
Fresh Water . . . . . . . . . . . . . . . . . . . . . . . . 124
20 Zinc Anodes - Standard Sizes for Use in Seawater . . . . . . 124
21 Zinc Anodes - Special Sizes for Use in Seawater . . . . . . . 125
22 Aluminum Pier and Piling Anodes - Standard Sizes . . . . . . 128
23 Type I Aluminum Alloy Anodes - Standard Sizes
for Offshore Use . . . . . . . . . . . . . . . . . . . . . 129
24 Type III Aluminum Alloy Anodes for Offshore Use . . . . . . . 130
25 Aluminum Alloy Hull Anodes - Standard Sizes
(Types I, II, and III) . . . . . . . . . . . . . . . . . . 132
26 Aluminum Alloy Bracelet Anode - Standard Sizes . . . . . . . 133
27 Technical Data - Commonly Used HSCBCI Anodes . . . . . . . . 161
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Read More !
Free Download it !

Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.
Posted By Blogger to Marine Notes Online on 1/27/2013 03:27:00 am
1:59 PM

Mechanical Engineer's Handbook by Dan B. Marghitu

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)

Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)
Mechanical Engineer's Handbook by Dan B. Marghitu
Department of Mechanical Engineering, Auburn University,
Auburn, Alabama

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1 Statics
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Product of a Vector and a Scalar . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Zero Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Resolution of Vectors and Components . . . . . . . . . . . . . . . . . . 6
1.8 Angle between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Scalar (Dot) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Vector (Cross) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Scalar Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.12 Vector Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.13 Derivative of a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Centroids and Surface Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Position Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 First Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Centroid of a Set of Points . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Centroid of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . . . . 15
2.5 Mass Center of a Set of Particles . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Mass Center of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . 16
2.7 First Moment of an Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Theorems of Guldinus±Pappus . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Second Moments and the Product of Area . . . . . . . . . . . . . . . . 24
2.10 Transfer Theorem or Parallel-Axis Theorems . . . . . . . . . . . . . . 25
2.11 Polar Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Principal Axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Moments and Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Moment of a Bound Vector about a Point . . . . . . . . . . . . . . . . 30
3.2 Moment of a Bound Vector about a Line . . . . . . . . . . . . . . . . . 31
3.3 Moments of a System of Bound Vectors . . . . . . . . . . . . . . . . . 32
3.4 Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Representing Systems by Equivalent Systems . . . . . . . . . . . . . . 36

4. Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Equilibrium Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5. Dry Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Static Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Kinetic Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Angles of Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 2 Dynamics
Dan B. Marghitu, Bogdan O. Ciocirlan, and Cristian I. Diaconescu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.1 Space and Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3 Angular Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2. Kinematics of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1 Position, Velocity, and Acceleration of a Point. . . . . . . . . . . . . . 54
2.2 Angular Motion of a Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Rotating Unit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Straight Line Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Curvilinear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 59
2.7 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3. Dynamics of a Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1 Newton's Second Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Newtonian Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Inertial Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 77
3.6 Polar and Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Principle of Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.11 Principle of Impulse and Momentum. . . . . . . . . . . . . . . . . . . . 87
3.12 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . 89
3.13 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14 Principle of Angular Impulse and Momentum . . . . . . . . . . . . . . 94

4. Planar Kinematics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Rotation about a Fixed Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Relative Velocity of Two Points of the Rigid Body . . . . . . . . . . . 97
4.4 Angular Velocity Vector of a Rigid Body. . . . . . . . . . . . . . . . . . 98
4.5 Instantaneous Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Relative Acceleration of Two Points of the Rigid Body . . . . . . . 102
4.7 Motion of a Point That Moves Relative to a Rigid Body . . . . . . 103

5. Dynamics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Equation of Motion for the Center of Mass. . . . . . . . . . . . . . . 111
5.2 Angular Momentum Principle for a System of Particles. . . . . . . 113
5.3 Equation of Motion for General Planar Motion . . . . . . . . . . . . 115
5.4 D'Alembert's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 3 Mechanics of Materials
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.1 Uniformly Distributed Stresses . . . . . . . . . . . . . . . . . . . . . . . 120
1.2 Stress Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.3 Mohr's Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.4 Triaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.5 Elastic Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.7 Shear and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.8 Singularity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.9 Normal Stress in Flexure. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.10 Beams with Asymmetrical Sections . . . . . . . . . . . . . . . . . . . . 139
1.11 Shear Stresses in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1.12 Shear Stresses in Rectangular Section Beams . . . . . . . . . . . . . 142
1.13 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
1.14 Contact Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2. De¯ection and Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.2 Spring Rates for Tension, Compression, and Torsion . . . . . . . . 150
2.3 De¯ection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4 De¯ections Analysis Using Singularity Functions . . . . . . . . . . . 153
2.5 Impact Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.6 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.7 Castigliano's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.8 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.9 Long Columns with Central Loading . . . . . . . . . . . . . . . . . . . 165
2.10 Intermediate-Length Columns with Central Loading. . . . . . . . . 169
2.11 Columns with Eccentric Loading . . . . . . . . . . . . . . . . . . . . . 170
2.12 Short Compression Members . . . . . . . . . . . . . . . . . . . . . . . . 171

3. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.1 Endurance Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.2 Fluctuating Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.3 Constant Life Fatigue Diagram . . . . . . . . . . . . . . . . . . . . . . . 178
3.4 Fatigue Life for Randomly Varying Loads . . . . . . . . . . . . . . . . 181
3.5 Criteria of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Theory of Mechanisms
Dan B. Marghitu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.1 Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.2 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.3 Kinematic Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1.4 Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 199
1.5 Planar Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

2. Position Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.1 Cartesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.2 Vector Loop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3. Velocity and Acceleration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.1 Driver Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.2 RRR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.3 RRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.4 RTR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.5 TRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

4. Kinetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.1 Moment of a Force about a Point . . . . . . . . . . . . . . . . . . . . . 223
4.2 Inertia Force and Inertia Moment . . . . . . . . . . . . . . . . . . . . . 224
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.4 Reaction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5 Contour Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

CHAPTER 5 Machine Components
Dan B. Marghitu, Cristian I. Diaconescu, and Nicolae Craciunoiu
1. Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.1 Screw Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.2 Power Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

2. Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.2 Geometry and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . 253
2.3 Interference and Contact Ratio . . . . . . . . . . . . . . . . . . . . . . . 258
2.4 Ordinary Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.5 Epicyclic Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
2.6 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.7 Gear Force Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.8 Strength of Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

3. Springs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.2 Material for Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.3 Helical Extension Springs . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.4 Helical Compression Springs . . . . . . . . . . . . . . . . . . . . . . . . 284
3.5 Torsion Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.6 Torsion Bar Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.7 Multileaf Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
3.8 Belleville Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380

3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407

4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Table of Contents ix
1.2 Technical Problems of Heat Transfer . . . . . . . . . . . . . . . . . . . 455
2. Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.1 The Heat Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3 Initial, Boundary, and Interface Conditions . . . . . . . . . . . . . . . 461
2.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
2.5 Steady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . 464
2.6 Heat Transfer from Extended Surfaces (Fins) . . . . . . . . . . . . . 468
2.7 Unsteady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . 472
3. Convection Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.1 External Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.2 Internal Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 520
3.3 External Natural Convection. . . . . . . . . . . . . . . . . . . . . . . . . 535
3.4 Internal Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . 549
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

CHAPTER 8 Fluid Dynamics
Nicolae Craciunoiu and Bogdan O. Ciocirlan
1. Fluids Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.1 De®nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.2 Systems of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.3 Speci®c Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.4 Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
1.5 Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.6 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.7 Capillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.8 Bulk Modulus of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.9 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
1.10 Hydrostatic Forces on Surfaces . . . . . . . . . . . . . . . . . . . . . . . 564
1.11 Buoyancy and Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
1.12 Dimensional Analysis and Hydraulic Similitude . . . . . . . . . . . . 565
1.13 Fundamentals of Fluid Flow. . . . . . . . . . . . . . . . . . . . . . . . . 568
2. Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
2.1 Absolute and Gage Pressure . . . . . . . . . . . . . . . . . . . . . . . . 572
2.2 Bernoulli's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.3 Hydraulic Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
2.4 Pressure Intensi®ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
2.5 Pressure Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
2.6 Pressure Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
2.7 Flow-Limiting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
2.8 Hydraulic Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
2.9 Hydraulic Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
2.10 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.11 Accumulator Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
2.12 Fluid Power Transmitted . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
2.13 Piston Acceleration and Deceleration. . . . . . . . . . . . . . . . . . . 604
2.14 Standard Hydraulic Symbols . . . . . . . . . . . . . . . . . . . . . . . . 605
2.15 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2.16 Representative Hydraulic System . . . . . . . . . . . . . . . . . . . . . 607
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

CHAPTER 9 Control
Mircea Ivanescu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
1.1 A Classic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
2. Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
3. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
3.1 Transfer Functions for Standard Elements . . . . . . . . . . . . . . . 616
3.2 Transfer Functions for Classic Systems . . . . . . . . . . . . . . . . . 617
4. Connection of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5. Poles and Zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
6. Steady-State Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
6.1 Input Variation Steady-State Error . . . . . . . . . . . . . . . . . . . . . 623
6.2 Disturbance Signal Steady-State Error . . . . . . . . . . . . . . . . . . 624
7. Time-Domain Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
8. Frequency-Domain Performances . . . . . . . . . . . . . . . . . . . . . . . . . 631
8.1 The Polar Plot Representation . . . . . . . . . . . . . . . . . . . . . . . 632
8.2 The Logarithmic Plot Representation. . . . . . . . . . . . . . . . . . . 633
8.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
9. Stability of Linear Feedback Systems . . . . . . . . . . . . . . . . . . . . . . . 639
9.1 The Routh±Hurwitz Criterion . . . . . . . . . . . . . . . . . . . . . . . . 640
9.2 The Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
9.3 Stability by Bode Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 648
10. Design of Closed-Loop Control Systems by Pole-Zero Methods . . . . . 649
10.1 Standard Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.2 P-Controller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 651
10.3 Effects of the Supplementary Zero . . . . . . . . . . . . . . . . . . . . 656
10.4 Effects of the Supplementary Pole . . . . . . . . . . . . . . . . . . . . 660
10.5 Effects of Supplementary Poles and Zeros . . . . . . . . . . . . . . . 661
10.6 Design Example: Closed-Loop Control of a Robotic Arm . . . . . 664
11. Design of Closed-Loop Control Systems by Frequential Methods . . . . 669
12. State Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13. Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
13.1 Nonlinear Models: Examples . . . . . . . . . . . . . . . . . . . . . . . . 678
13.2 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
13.3 Stability of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 685
13.4 Liapunov's First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
13.5 Liapunov's Second Method . . . . . . . . . . . . . . . . . . . . . . . . . 689
14. Nonlinear Controllers by Feedback Linearization . . . . . . . . . . . . . . . 691
15. Sliding Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
15.1 Fundamentals of Sliding Control . . . . . . . . . . . . . . . . . . . . . 695
15.2 Variable Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . . 700
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
A.1 Differential Equations of Mechanical Systems . . . . . . . . . . . . . 703
A.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
A.3 Mapping Contours in the s-Plane . . . . . . . . . . . . . . . . . . . . . 707
A.4 The Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 712
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

APPENDIX Differential Equations and Systems of Differential Equations

Horatiu Barbulescu
1. Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
1.1 Ordinary Differential Equations: Introduction . . . . . . . . . . . . . 716
1.2 Integrable Types of Equations . . . . . . . . . . . . . . . . . . . . . . . 726
1.3 On the Existence, Uniqueness, Continuous Dependence on a
Parameter, and Differentiability of Solutions of Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
1.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 774
2. Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.2 Integrating a System of Differential Equations by the
Method of Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2.3 Finding Integrable Combinations . . . . . . . . . . . . . . . . . . . . . 823
2.4 Systems of Linear Differential Equations. . . . . . . . . . . . . . . . . 825
2.5 Systems of Linear Differential Equations with Constant
Coef®cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Read More !
Free Download it !

Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.


--
Posted By Blogger to Marine Notes Online on 1/27/2013 02:55:00 am
1:32 PM

Welding Theory and Application

online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
WELDING THEORY & APPLICATION

TOC of WELDING THEORY & APPLICATION

Table of Contents

CHAPTER 1 - INTRODUCTION
Section I - General
Section II - Theory

CHAPTER 2 - SAFETY PRECAUTIONS IN WELDING OPERATIONS
Section I - General Safety Precautions
Section II - Safety Precautions in Oxyfuel Welding
Section III - Safety in Arc Welding and Cutting
Section IV - Safety Precautions for Gas Shielded Arc Welding
Section V - Safety Precautions for Welding and Cutting Containers That Have Held
Combustibles
Section VI - Safety Precautions for Welding and Cutting Polyurethane Foam Filled
Assemblies

CHAPTER 3 - PRINT READING AND WELDING SYMBOLS
Section I - Print Reading
Section II - Weld and Welding Symbols

CHAPTER 4 - JOINT DESIGN AND PREPARATION OF METALS

CHAPTER 5 - WELDING AND CUTTING EQUIPMENT
Section I - Oxyacetylene Welding Equipment
Section II - Oxyacetylene Cutting Equipment
Section III - Arc Welding Equipment and Accessories
Section IV - Resistance Welding Equipment
Section V - Thermit Welding Equipment
Section VI - Forge Welding Tools and Equipment

CHAPTER 6 - WELDING TECHNIQUES
Section I - Description
Section II - Nomenclature of the Weld
Section III - Types of Welds and Welded Joints
Section IV - Welding Positions
Section V - Expansion and Contraction in Welding Operations
Section VI - Welding Problems and Solutions

CHAPTER 7 - METALS IDENTIFICATION
Section I - Characteristics
Section II - Standard Metal Designations
Section III - General Description and Weldability of Ferrous Metals
Section IV - General Description and Weldability of Nonferrous Metals

CHAPTER 8 - ELECTRODES AND FILLER METALS
Section I - Types of Electrodes
Section II - Other Filler Metals

CHAPTER 9 - MAINTENANCE WELDING OPERATIONS FOR MILITARY EQUIPMENT

CHAPTER 10 - ARC WELDING AND CUTTING PROCESSES
Section I - General
Section II - Arc Processes
Section III - Related Processes

CHAPTER 11 - OXYGEN FUEL GAS WELDING PROCEDURES
Section I - Welding Processes and Techniques
Section II - Welding and Brazing Ferrous Metals
Section III - Related Processes
Section IV - Welding, Brazing, and Soldering Nonferrous Metals

CHAPTER 12 - SPECIAL APPLICATIONS
Section I - Underwater Cutting and Welding with the Electric Arc
Section II - Underwater Cutting with Oxyfuel
Section III - Metallizing
Section IV - Flame Cutting Steel and Cast Iron
Section V - Flame Treating Metal
Section VI - Cutting and Hard Surfacing with the Electric Arc
Section VII - Armor Plate Welding and Cutting
Section VIII - Pipe Welding
Section IX - Welding Cast Iron, Cast Steel, Carbon Steel, and Forgings
Section X - Forge Welding
Section XI - Heat Treatment of Steel
Section XII - Other Welding Processes

CHAPTER 13 - DESTRUCTIVE AND NONDESTRUCTIVE TESTING
Section I - Performance Testing
Section II - Visual Inspection and Corrections
Section III - Physical Testing
APPENDIX A - REFERENCES
APPENDIX B - PROCEDURE GUIDES FOR WELDING
APPENDIX C - TROUBLESHOOTING PROCEDURES
APPENDIX D - MATERIALS USED FOR BRAZING, WELDING, SOLDERING, CUTTING, AND METALLIZING
APPENDIX E - MISCELLANEOUS DATA

GLOSSARY

LIST OF ILLUSTRATIONS

LIST OF TABLES

WARNINGS

Download it for Free !


Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.


--
Posted By Blogger to Marine Notes Online on 1/27/2013 01:10:00 am
12:34 PM

Labels

_8th_Edition _D._A._(1996) _D._F._(2004)._Pounder's _E._C._(1996) _FT _LI) 1. Industrial application of pneumatics 1.5°C 1250 1900 2 Stroke Crosshead Engine Piston 2°C 2014 2015 2015-2016 2016 2016-2017 3-D printing 3-D-printed guns 3176C-and-3196-Marine-Engines-Engine-Safety 3D JOB 4-methylcyclohexane methanol 4G LTE 7 inch A diesel engine protection systems and alarms A dynamometer can be used to find the brake horsepower of an engine. A guide for correct entries in the oil record book A masters guide to berthing A positive displacement pump Principle of Operation A simplified overview of the revised Marpol Annex V (resolution MEPC.201(62)) A-Dictionary-of-Units-and-Conversions Abolition of Man abortion abrupt abrupt climate change AC Switchboards academic publishing ACARS accelerated accelerating access Accident_prevention_on_board_ship_at_sea_and_in_port ACCIDENTS.doc accord acid steel and basic steel ACRONYMS FOR ORGANIZATIONS act action actuation actuator Address Hotel fire Address of Shipping Companies Admiralty and maritime law adult sites advantages and disadvantages of using hydrogen Aereo AERONAUTICAL aerosols AEROSPACE aerospace engineering aesthetics of music Affdex Affectiva affective computing Affordable Care Act AGRICULTURE air bag Air compressors Air Conditioner Evaporator and Condenser Air Coolers and Cleaning Air ejectors Air Intake System air safety Air_Ejectors Air_Heaters air-defense system airbag inflator recall airbag recall airbags airline pilot airplanes airport security Akasaki Aker Solutions Alamo Alaska albedo Alec Guinness Alexander Woollcott Alfred Nobel algorithms AlphaGo aluminum composite panels Amano amateur radio Amber Joy Vinson AMEG Amendments (IMO amendments to SOLAS American Water Company ammonium nitrate amphibious vehicle amplification Amur River AN An Introduction to Fluid Mechanics An introduction to the IMDG code An Introduction to Thermodynamics Analysis and design of ship structure Analysis of Ship Structures and fuel lines. and Stern Tube and thermal efficiency Andreas Lubitz Andrew Carnegie Andrew Dessler Andrew Glikson Andrew Harvey Andrew Watson ANDROID Android project titles ANGLE OF HEEL-TURNING ANGLE OF HEEL-TURNING.ppt angle seat valve Animation projects animation stand anomalies anomaly Antarctica antenna Anthony Esolen Anthony john Wharton Apple Applied Heat Applied Mechanics Aquinas architecture archive Arctic Arctic Methane Emergency Group Arctic Ocean area AREA LEAD ENGINEER JOB Aristotle Arizmendiarrieta armed robbery and other acts of violence against merchant shipping art Arthur Eddington artificial intelligence As you are aware MEO Class IV (B) on line examinations Ashley Furniture Ashley Madison Asperger's syndrome assigned summer freeboard ASSIGNMENT OF FREEBOARD ASSIGNMENT OF FREEBOARD.ppt At max.continuous rating with engine running steadily ATF Atlantic Atlantic Ocean ATTEMPERATOR. augmented reality augmented-reality game Augustine Auschwitz auto safety AutoCAD AutoCAD Plant 3D automation AUTOMOBILE automotive industry automotive safety autonomous car autonomous vehicle autonomous vehicles autopilot AutoPLANT Job Auxiliary Machinery average aviation Azim Shariff Azle Babcock_M21_boiler babcock_wilcox Bach backscatter X-ray technology backup Baffin Island ball valve BALLAST AND BILGE PUMPING AND DRAINAGE ARRANGEMENTS Ballast water exchange procedures and their problems BANK JOBS BANK RECRUITMENTS banking Barrow Barry Diller barstool BASE jump baseline basic definitions for an engineer Basic definitions of engine construction Basic Electrical Objective questions Basic Electrical Objective questions on transformer basic engine definitions Basic Pneumatic Training Course Basic principles of marine engineering Basic principles of ship propulsion Basic principles.ppt Basic Properties of petroleum and its hazards Basic Thermodynamics gate notes Basic Thermodynamics Lecture Notes BASIC_MARINE_ENGINEERING BASIC_MARINE_ENGINEERING free download Basic_Ship_Theory_5E_VOLUME1 Basic_Ship_Theory_5E_VOLUME2 BASIC-MARINE-ENGINEERING Basics of Centrifugal pumps Basics of Heat Exchanger basics of mechanical engineering.basics which everyone has to know. basics.mworld battery explosion Beare_Technology_-_Innovative_Engine_Design. Beaufort Sea beautiful lie Beethoven Ben Simons Bering Strait Bernie Sanders Big Three Bill and Melinda Gates Foundation Bill McGuire Bill McKibben Bio instrumentation Project titles BIO signal Project titles BIO-TECHNOLOGY BIOINFORMATICS BIOMEDICAL biometrics Biometrics projects birth control birth control chip bit hydraulics Bit Technology bitcoin black box black carbon black engineers black history BlackBerry blackout blackout or ship's alternator inside blow though Blow Through Boiler Gauge Glass blr_feed_water_treatment blr_refractories Blue Coat Systems blue LED blue light Blue Ocean BNSF body cameras boiler BOILER AUXILIARY COMPONENTS boiler blow down and auxiliary engine centrifugal pumps and more Boiler epariksha questions Boiler Fuel oil system boiler operator handbook BOILER TYPES boiler water treatment? Boiler_accesories BOILER_CONTROLS Boiler_feed_water_treatment Boiler_Mountings Boiler_Operator__s_Exam_Preparation_Guide Boiler_Operators_Handbook_By_Kenneth_E._Heselton_PE_CEM Boiler_refractories BOILER_TYPES Boilers and other pressure vessels BOILERS QUESTIONS FILL IN THE BLANKS / ANSWER boilertreatment bomb threat book publishing book sales books books4free booksforfree Boolean algebra Boston Molasses Disaster botnet bottomstructure. Brahms brain research brain science Brake horsepower Brendan Eich bribery bridge gauge Bridge team management A practical guide by Captain A J Swift FNI British thermal unit Brooke Melton Bruce Schneier building code building codes bullying Bunkering Operation on ships Buoyancy & Hookload bureaucracy cable TV CAD CADWORKS calcium carbide calibration California Department of Motor Vehicles California Public Utilities Commission calorific value Canada Cantal Capesize capture car bomb car infotainment system car pc carbon carbon capture carbon dioxide carbon monoxide carbon tax Carburetion and Fuel Injection CAREER Cargo hold coatings recommended working procedures CARGO PUMPS.doc CARGO TANK VENTING ARRANGEMENTS Cargo Ventilation by david anderson and daniel sheard casing and cementing CAT 2014 Questions Causes of static electricity CAUSES OF STATIC ELECTRICITY.doc Cave of El Castillo Cavitation Cavitation in pumps Cavitation why it occurs CAVITATION.doc CB&I Job CDC CDR cellphone cellphone tracker cellphone tracking censorship Center for Medical Progress Center of Excellence for Engineering Biology Central cooling System Centrifugal Pump Characteristic Curves Centrifugal Pump Classification by Flow Centrifugal Pump Components Centrifugal Pump Fundamentals Centrifugal pump principles and working procedure Centrifugal Pump Protection Centrifugal pumping operation CENTRIFUGAL PUMPS Centrifugal Pumps Characteristics Centrifugal pumps construction CENTRIFUGAL PUMPS In Detail CENTRIFUGAL PUMPS In Detail By P.K.Nagarajan Centrifugal-Compressor-Operation centripetal force.ppt certificates and documents to be carried Certificates of Competency (CoC) CFC CGI CH4 change changed Chapter_1__Introduction_to_Mechanisms Chapter_2__Mechanisms_and_Simple_Machines Chapter_3__More_on_Machines_and_Mechanisms Chapter_4__Basic_Kinematics_of_Constrained_Rigid_Bodies Chapter_5__Planar_Linkages Chapter_6__Cams Chapter_7__Gears Charles Krauthammer Charles Tandy Charleston Charlie Miller Chartres Cathedral Checks to be made while running an diesel generator CHEMICAL chemical fire chemical safety Chemical Safety Board chemical tankers and gas carriers. CHEMICAL_DOSING_UNIT Chet Kanojia Chicago children and media chlorofluorocarbon Choke Valve Chris Vasalek Christopher Alexander Christopher Harper-Mercer Cindy Snodgrass circadian rhythm CIVIL civil engineering Civil projects class CLASS 2 questions topic list.doc class iv class iv checklist class iv epariksha pattern questions Class IV Marine Engineer Officer (Applied Mechanics) question papers class iv orals Class-2-Orals Class-2-Orals mmd exams classical music classIV clathrate clathrates clean Cleburne Cliff Frohlich climate climate change climate plan Climate Summit Clive Thompson cloud cloud computing CME CO CO2 Coatzacoalcos Code of practice for the safe loading abd unloading of bulk carriers code of safe working practice for australian seafarers Code of safe working practices for merchant seamen Cody Wilson coils COLD WORKING Cold_Hot_Working_Annealing collapse combination carriers combustion comedy film Command and Control common carrier communication studies COMP- PROJ-DOWN Comparision of 2 and 4 stroke COMPARISON OF STABILITY OF A SHIP IN THE LIGHT AND FULLY LOA.doc compatibilism compile xbmc Component of a pneumatic system comprehensive Compressed air preparation computer game computer science COMPUTER SCIENCE PROJECT DOWNLOADS COMPUTER(CSE) concentration Conduction Conduction and Radiation. CONFERENCE conflict of interest Congress Congressional mandate connecting rods conscientious objector conservative CONSTRUCTION - ALL SHIPS Construction and testing of watertight bulkheads Construction and testing of watertight decks construction cranes Construction Job Construction Methods construction of a tail shaft Consumer Product Safety Commission Container shipping: impact of mega containerships on ports in europe and the med Container stowage plans container terminals and cargo systems Containership continue contraception control Control Room control CONTROL VALVE controller Convection easy understanding copyright copyright laws Cordaro cornfield meet coronal mass ejection corporate culture Correcting an angle of loll.ppt corrosion found in the boiler and feed systems cortex m4 Counter flow CPUC Craig McCaw crane collapse CRANE MAINT.ppt crank_shaft Crankcase questions Crankshaft and camshaft crankshaft_construction crash Criminalization of Seafarers: Defining the Problem and Seeking Solutions critical service Cross flow Crude oil washing COW CRUDE OIL WASHING.doc CryoSat current currents CURRICULUM OBJECTIVES CURRICULUM OBJECTIVES for marine engineers cyberattacks cyberbullying cyberwarfare cyclone cyclones cylinder head questions Cylinder liners questions Cylinder lubrication Cylinder lubrication of two-stroke crosshead marine diesel engines Cylinder_Combustion cylinderheads D J Eyres DAMAGE TO EXHAUST GAS BOILER Damascus incident Damascus nuclear accident Dan Gillmor Dan_B._Marghitu_Mechanical_Engineers_Handbook. dangerous Daniel Kieve Daniel Sarewitz Danish Load mark Danny Crichton dark web Darren Wilson Data and Goliath Data mining Projects date David Cameron David Keith David Spratt DCCC DDOS attack Deadweight death Debbie Sterling debian wheezy decade Deck Mark decks and inner bottoms decline Deep Blue deep web defeat device DEFECTS IN WELD Democratic Congressional Campaign Committee Democratic National Committee Department of Commerce depression depth Describe a governor Descriptions of Fluid Flows design DESIGN ENGINEER JOB Design guidelines Design projects Design_Of_Machinery_-_Robert_Norton_2Nd_Edition Design-Of-Ship-Hull-Structures-A-Practical-Guide-for-Engineers designer job Destin Sandlin determinism Deutsche physik Dick Cheney diesel diesel engine Diesel Engine Combustion and fuel questions Diesel Engine Emissions Diesel Engine Fundamentals Diesel Engine Principle and Practice:Starting gear Diesel Engine Principle and Practice:Transmission systems Diesel Engines by A J Wharton diesel exhaust fluid DieselEngine_ReferenceBook Difference between Boiling Point and Melting Point Different Types of Pumps different types of starting circuits of diesel engines Different Types of Tanks digital clone digital privacy DIGITAL SIGNAL PROCESSING IEEE Project titles Directional Drilling disaster preparedness discovery discrimination Displacement display distinctive ships of 2009 Distress signals distress signals.doc diversity DNC DNS Donnie Dippel Dorsi Diaz Dot net projects Double hull tankers are they the answer? Downhole Motors Drafting DRC drift drilling drilling fluid Drillstring Basics driverless car drone drone delivery drone regulation drone safety DRS drug laws DRV Dry docking pictures Dry docking.ppt drydock DRYDOCKING Drydocking_Inspection DRYOCK.ppt Dubai hotel fire duck tour duct keels and ventilators DUKW Dyn dynamic Dynamical stability e-books e-cigarette e-cigarette explosion E. J. Dionne Eagle early adopter earth faults earth faults equipment earth faults maintenance earthed system earthing on shaft earthquake earthquake engineering earthquake forecast earthquake forecasting earthquake prediction earthquakes East Siberian Arctic Shelf East Siberian Sea Ebola ebook EBOOKS eclipse ecocide ecology ECT ECV Ed Kyle Eddie Rodriguez Edward Snowden edX effective eGalax egkrateia EgyptAir Flight 804 Einstein EIT exam Ekta Kalra El Nino El Niño Electric Reliability Council of Texas electric vehicle electric welding ELECTRICAL INSTALLATIONS ELECTRICAL MINI PROJECTS ELECTRICAL PROJECTS DOWNLOADS Electrical_Maintenance Electro Pneumatics Electro Technology electroconvulsive therapy Electronic control common rail type fuel injection system electronic medical records electronic privacy electronic voting electronics hobby ELECTRONICS MINI PROJECTS ELECTRONICS PROJECT DOWNLOADS electroshock therapy Elektronika Industri Elementary Drawing Ellsworth Elon Musk Elsevier email email archive email bankruptcy embedded EMERGENCY BILGE PUMP EMERGENCY PROCEDURE ON BLACKOUT emergency-switchboard EMG PROJECTS Emily Leproust Emission and Control emissions emissions standards employment EMR enclosure encrypted encryption encyclical energy energy policy Engine block manufacturing process Engine Control Engine Control by Fuel Injectors Engine Cooling Engine Lubrication Engine Protection engine room of a motor ship is ventilated engine suitable for a lifeboat Engine wont turn over to start ? engine_construction engineering courses engineering education engineering ethics engineering ethics cases engineering ethics exemplar Engineering In the Headlines Engineering Job Engineering Knowledge (Steam) Engineering Knowledge I Engineering Knowledge II Engineering Knowledge(Motor) Engineering management Engineering Mechanics Engineering Mechanics basics Engineering Mechanics for gate Engineering projects engineeringbooks Engineers Without Borders environmental engineering Environmental Protection Agency EPA epariksha epariksha bearing questions epariksha exams. epariksha for class iv epariksha online epariksha preparation notes Epariksha sample ERCOT Eric Schlosser eruption eruptions ESAS Especially written for the merchant navy essay grading Ethical and Otherwise ethical exemplars ethics ethics blog collection EU European Union exam_papers_Question_Papers_mmd Examination of Engine Drivers of Sea-going Ships Examination of Engineers of Fishing Vessels(Motor) EXAMINATION OF MARINE ENGINEER OFFICER ENGINEERING KNOWLEDGE (GENERAL) EXAMINATION SYSTEM FOR MARINE ENGINEER OFFICER Exams exams at india mmd Excel Download Exhaust and inlet valves EXHAUST GAS BOILER Exhaust gases expert system exploding airbags explosion extent externality extinction extreme extreme weather extremism Exxon Mobil F-150 F-150 brake F.W_FLOW_CONTROL_VALVE. FAA Facebook factors affecting the shape of the curve of statical stability Facts fail close failure fall Familiarization of Digital Multi meters and Analog Multi meters family Family Hub family meals Fans and Blower design Fashionisto fasting faultline FBI FCC FDA February Federal Emergency Management Agency Federal Radio Commission feeback feebates feed system feed water management feedback feedbacks Ferguson fertilizer Fertilizer Institute Fiat Chrysler Auto Field Piping Engineer FIELD_INSTRUMENT(LT final year projects financial fraud fire and ignition point fire code fire hazard fire investigation fire safety Fire_Protection fireworks First Law of Thermodynamics first responders FIRST robotics competition Fixed_CO2_Extinguishing_System flame arrestor flame screen flame speed FLAMMABILITY and flammable limits flash-back flashpoint of oil flat-screen TV flight recorder Flint water crisis Flirtey flood Fluid Machinery Fluid Machinery basics and lecture notes Fluid Mechanics fluid mechanics lecture notes online Fluor Job fm radio FOOD TECHNOLOGY Ford Fort Worth fossil fuel four_stroke_piston Fourth Amendment fracking fracking and earthquakes fractured fracturing Fram Strait FREE IEEE 2014 project Free IEEE Paper FREE IEEE PROJECTS free will freedom freedom of information French Alps French Revolution frequency allocation Fresh water cooling systems return Fresh Water Generator or Evaporator (Alfa Laval Type) Friedemann Freund Friedrich Hayek FSS) Fuel Injectors Fuel System fuel_injector Functions of Ships Main Engine Thrust Block Fundamental of MAN BW Common Rail Fuel Injection Fundamental of Sulzer Common Rail Fuel Injection Fundamentals of machine design FUNDAMENTALS OF METAL FORMING fusable link fusion power fusion reactor G-Electric_Charge G. K. Chesterton Galaxy Note 7 Galaxy recall Gary Houser Gary Salton gas over oil Gas Power Cycles Gas Welding Process GATE gate Engineering Mechanics gate fluid mechanics online gate heat and mass transfer gate industrial engineering gate Introduction_to_Turbulence notes gate KINEMATICS OF MACHINES gate Material Science gate notes online gate Refrigeration and Air Conditioning Notes GAte scorecard gate Strength of Materials Notes gate study material gate study notes gate valve gateMaterial selection and Design Notes Gates Foundation gauge glass General Engine Protection General Engineering Science General Mills General Motors General Problems Troubles in boiler generator crankshaft renewal genetic engineering genocide GeoCosmo geoengineering geomagnetic storm George Parkin Grant Germanwings Given Imaging Giving Pledge glaciers global global competition global warming Glossary of nautical terms Glossary_of_nautical_terms GM GM ignition recall GME_competence Go Gold King mine Golden Rule GoldieBlox Google Google Glass GoPro GoPro Mountain Games governor GOVT JOBS gpio GPS Graduate Piping Engineer Grand Mosque Green projects greenhouse gas greenhouse gases Greenland grid Gross Register Tonnage GSM BASED Guardians of Peace Guest authors Guide_to_ship_sanitation guidelines to mmd exams at india Gulf Stream gun control Gutenberg Guy McPherson GWP habitat hackers hacking Haiti earthquake hajj ham radio HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION.rar HANDBOOK_ELECTRICAL_ENGINEERING_CATHODIC_PROTECTION Happy Friendship Day hard drive hardback books Harold Hensel Harpo Harris Corporation Harvard hashtag Hatch cover maintenance and operation by david byrne havoc Hazards of Compressed Air HBCU Health Information Technology For Economic and Clinical Health Act heat Heat and Mass Transfer Lecture Notes Online.Heat and Mass Transfer Notes for gate heat caused by friction in the bearings Heat Exchanger heat index Heathrow heating heatwave heavy metal Hegel Henry Adams Henry Ford Henry Petroski High high cycle high pressure high suction HIGHWAY History of oil transportation at sea Holds and hatch covers by A.Bilbrough and Co ltd hole hologram Honda Horsepower HOT WORKING hoverboard hoverboard fires How a mechanical seal works How alternating current is produced onboard How Are Emissions Regulated? how bourdon pressure gauges work How Can We Control Diesel Emissions? how containers are loaded how different compressors work How does a clamp meter work How Does an Air Conditioner Work? how does it control engine spend? How does Welding damage Eye sight? how electric welding is carried out how to how to blow through a boiler How To Use a Clamp meter? How_a_Rotocap_Works HUll FORM Hull forms Hulu Human Genome Project human rights Out of sight Humana Group Medicare humidity hurricane Hurricane Katrina hydrate hydrates hydraulic fracturing hydraulic override hydrogen hydrogen as an I.C.Engine fuel hydroxyl I Opt I see the problem IASI IC Engine IC Engine Performances ICANN ICAO ICCP ICCP system ice iCloud Identify various capacitors and understand their specifications IEEE 2014 projects ieee 2015 projects IEEE code of ethics IEEE computer science projects IEEE Paper IEEE PAPER 2015 ieee project titles IEEE projects IEEE Transactions IES IAS 20 Years Question Answers ignition switch ignition-switch recall Igor Semiletov illusion of safety imagine immortalist immortality IMO latest amendments imoconventions Impact Team Importance of maintaining log book records during a watch important points about centrifugal pumps cavitation Impressed Current Cathodic Protection System in detail about the engine type and code 6S70MEC IN-TANK_HEATER_FOR_F.W_FILTER_TANK India india shipping for exams INDUSTRIAL Industrial Application of Pneumatics Industrial Electronics Industrial Engineering Lecture Notes for gate Industrial Engineering S K Mondal’s Notes industrial revolution Industrial Switches industrial valves Inert Gas Generator Manual INERT GAS SYSTEM Inert Gas System IGS Complete Information Inerting information provider information wants to be free infrastructure Initial stability refers to stability ? Inner lubrication and pulse jet lubrication INNOVATIVE PROJECTS Inside Out Instagram instruction to Online Seat Booking For Examination instrument Insulated and earthed neutral system insulated system Insulation insulation tests insurance interchangeable INTERFACING Internal Combustion Engine Cycles of Operation International Maritime Dangerous Goods 2004 Edition International safety management code internet Internet governance Internet of things internships Interstate Highway System interview Intro_to_Marine_Engineering_D.A_Taylor_Revised_Second_Edition Intro_to_Naval_Architecture_3E Introduction to IC Engines and Air Pollution Introduction to IC Engines and Air Pollution gate notes Introduction to IC Engines and Air Pollution Notes Introduction_to_Marine_Engineering_(2nd_ed.)_TAYLOR Introduction_to_Naval_Architecture_(3rd_ed.)TUPPER Introduction_to_Turbulence for gate invisible man ion mobility spectrometry IoT iPad IPCC iPhone Iron Dome IRS scandal ISAC ISIS ISMcode isostatic rebound ISP ISPS Guidence to ship security plan Israel-Hamas conflict Israeli Defense Force IT IT LIST ITER iTunes IVCRF J. P. Moreland JAARS Jacket water Cooling Jacques Barzun James Hansen Japan Jaron Lanier Java projects Jean Harlow Jen Hatmaker Jennifer Francis Jennifer Hynes Jerome Lemelson Jet Propulsion jet stream Jewish physics Jim Pettit Joaquin jobs Joe Carson John Cornyn John Davies John Lennon John Nissen John Robison Joshua Brown Joshua Schulz Joy Hirsch judgment June 28 justice K.VENKATARAMAN. Marine notes Katasi Kathleen Vohs Katrina Ken Kanojia Kenefic Kennedy assassination kernel rebuild keyring Kim Jong Un Kindle KINEMATICS OF MACHINES for gate KINEMATICS OF MACHINES notes online for free Know_and_Understand_Centrifugal_Pumps Knowing and using the ILO and IMO instruments for the well-being of Seafarers and Fishers (on board and ashore) kodi Kolkata overpass collapse Kurt Cobain Kyle Kacal Kyoto Protocol labview projects Ladder diagram Ladder Logic Simulator Ladsim Lagrangian Description landslides Langdon Winner Lantern Ring Laptev Sea Larger diesel engines are often equipped with two lubricating systems Larry Ellison Larry Walters laser late adopter latent heat Latest Development in Engines LATEST TECHNOLOGY Laudato Si law enforcement Lawrence Lessig laws lawyers LAYOUT ENGINEER JOB Le Corbusier lead lead pipe Lead Piping Engineer learn center for epariksha. Learn Piping LEDs Lee Sedol legal legislation Lemelson Foundation Leonard Nimoy Leonid Yurganov levels levonorgestrel libertarian licensed professional engineer lid lie detector lifespan light exposure lightning Lightweight Likert scale limit limit switches linear linux list of project centers list of rights of women seafarers List-of-Certificates-and-Documents-required-on-Board lithium-ion battery living wage LNG DUAL FUEL ENGINE Load criteria for ship structurak design Load Line Length Loadline Mark Location and separation of spaces logbook Lois Lerner Lone Ranger longevity Look Me In the Eye loops Los Alamos National Labs low Low cost projects low suction low suction and high suction sea chest lowest LR Scantling Length Luby's Lucy Lysenkoism m.com M/E Machinery's_Handbook_27th_Edition Mackenzie River Magpie Main Switch Board(MSB) Safeties mainengine Maintenance_Engineering_Handbook_by_Lindey_R_Higgins_R_keith_Mobley Malaysia Airlines Flight 370 Malcolm Light Malfunction and troubleshooting for diesel engine malware MAN BW K/L/S80-90MC manager Manila Amendments New Requirement Changes mantle methane manual override Manufacturing of brake disc Manufacturing of Integrated Circuits Manufacturing of Plastic Bottles Marcel Proust Marilynne Robinson MARINE MARINE ELECTRICAL KNOWLEDGE QUESTIONS ANSWERS Marine Engineer Officer (Applied Mechanics) - Class I Marine Engineer Officer (Applied Mechanics) - Class IV Marine Engineer Officer (Electro Technology) - Class I Marine Engineer Officer (Electro Technology) - Class II Marine Engineer Officer (Electro Technology) - Class IV Marine Engineer Officer (Engineering Drawing) - Class IV Marine Engineer Officer (General Engineering Science 1) - Class III Marine Engineer Officer (General Engineering Science 2) - Class III Marine Engineer Officer (Heat Engines) - Class I Marine Engineer Officer (Heat Engines) - Class IV Marine Engineer Officer (Mathematics) - Class IV Marine Engineer Officer (Mechanics and Hydromechanics) - Class II Marine Engineer Officer (Naval Architechture) - Class I Marine Engineer Officer (Naval Architechture) - Class II Marine Engineer Officer (Ship Construction and Stability) - Class IV Marine Engineer Officer (Thermodynamics and Heat Transmission) - Class II Marine Engineer Officer Question Papers Marine Engineer Officer Questions Papers (Electro Technology) - Class IV Marine Engineer Officer(Marine Engineering Practice) - Class II Marine Engineering Knowledge (Steam) - Class IV Marine Engineering Knowledge 2- Class III Marine Engineering Knowledge I - Class III Marine Engineering Knowledge(General) - Class I Marine Engineering Knowledge(General) - Class II Marine Engineering Knowledge(General) - Class IV Marine Engineering Knowledge(Motor) - Class I Marine Engineering Knowledge(Motor) - Class II Marine Engineering Knowledge(Motor) - Class IV Marine Engineering Knowledge(Steam) - Class I Marine Engineering Knowledge(Steam) - Class II Marine Engineering Practice - Class IV Marine Growth Preventing System Marine Insurance and claims Marine Safety’s Service Standards Marine_Auxiliary_Machinery_7th_ed._-_H._McGeorge_(1995)_WW Marine_Auxiliary_Machinery-McGeorge_7th_edition Marine_Diesel_Engine_(_GME_Competence_6) Marine_diesel_engine(dual) Marine_Diesel_Engines_and_Gas_Turbines_(8th_ed.)WOODYARD Marine_Diesel_Engines_Gas_Turbines_8E_by_POUNDER MARINE_ELECTRICAL_KNOWLEDGE Marine_Electro_Technology orals Marine_Emergency_Response_and_Communications Marine_Engineering_Class-3 Marine_Engineering_Knowledge_General orals Marine_Engineering_Knowledge_Motor orals Marine_Engineering_Practice Orals marinebooks marineengineer marinenotes mariner Mariner's_Handbook_2004 marinerboo Maritime Practice In India By Shrikant Hathi and Binita Hathi Maritime Safety and legislation breathing apparatus Maritime Safety and legislation command and control Maritime Safety and legislation extinguishing agents and portable extinguishers Maritime Safety and legislation fire detectors Maritime Safety and legislation fire hazards in the engine room and various parts of the ship Maritime Safety and legislation Fixed co2 Extinguishing Systems Maritime Safety and legislation Fixed Extinguishing Systems Fire mains and fire hydrants hoses Maritime Safety and legislation Fixed Extinguishing Systems sprinkler and hi fog systems Maritime Safety and legislation fixed foam systems Maritime Safety and legislation ship construction Maritime transportation safety management and risk analysis by Svein Kristiansen Mark Hood Mark Jacobson Mark Z. Jacobson Mark Zuckerberg Marks'_Standard_Handbook_for_Mechanical_Engineers Markus Persson MARPOL Mars One Marshall McLuhan Martin Ford Mary Barra mass shooting mass surveillance Masters guide to shipboard accident response Material Acceleration Material Engineer material handling Material Science Notes Material Science Notes for gate Material selection and Design Notes for gate materials used to make cylinder line math Matlab codes MATLAB PROJECT TITLES MATLAB PROJECTS maximum MBA MBA 2015 projects MC-C MCA McDERMOTT Job MCHM MDS JOB ME mean meant by thermo dynamic Measures to counter piracy measuring specifi gravity Mecca MECHANICAL mechanical efficiency MECHANICAL PROJECTS DOWNLOAD MECHANICAL PROPERTIES mechanical properties of a material.mechanical properties Mechanical Seal Types Mechanical Seals MECHANICAL_SCIENCE_vol1 mechanism MEK MEK GENERAL ORALS MEK MOTOR ORALS melt melting meltwater MEO Applied Mechanics MEO Applied Mechanics Question Papers MEO Class 4 Oral Questions MEO Class IV MEO Examination Class iv checklist MEP MEP Orals Mercedes-Benz merchant merchant navy Merchant ship construction by H J Pursey extra master mercury-vapor lamp MET MET ORALS MET_MEP_MEK methane methane monster methanol methanol as motor fuel methanol economy metldown MetOp MGPS system on ships Michael Brown Michael Mann MicroCHIPS Microsoft microstampin MICROSTATION mind reading Minecraft MINI PROJECTS minimum minions misery index mission to Mars Mississippi Power MIT MMD MMD E-Pariksha mmd exam papers mmd india mmd online booking. mmd oral questions mmd orals mmd question papers Mo. mobile phone Model Question Papers Model S modelling projects Mondragon monetize Montreal Protocol Moore's Law moral authority moral law moral limits moral reasoning morality Motherboard Motor Cooling system questions motor fuel Motor_EK_notes_by_Glassgow_UK moving stall MP3 MP3 cutter Mp4 Mr. Spock Multi stage centrifugal pump multi-year music and technology Nakamura NASA Natalia Shakhova Nathan Currier National Highway Traffic Safety Administration National Highway Transportation Safety Administration National Institutes of Health National Rifle Association National Science Foundation National Security Agency National Sheriffs' Association National Society for the Prevention of Cruelty to Children Nautical Terms Naval architecture Naval_Architecture_Ship_Construction navigation Navigation Rules International Inland Navigational calculations Navit Navy Terminology NCIIA NEMA NERC NET net neutrality Net Positive Suction Head Net Register Tons network effect network neutrality Networking topics New York Newark NHTSA Nick Breeze Nick Holonyak Nick Paumgarten NIH Nina Pham Nintendo Nitriding NOAA Nobel Prize nonpracticing entities North Korea North Pole North Seattle College Notes on ship handling NPE NRA ns2 projects NSA NSBE NSF NSPE NTSB nuclear accident nuclear energy nuclear power nuclear power plants nuclear reactor nuclear safety nuclear waste nuclear weapon NYPD X-ray van Obama Obamacare OBD-II port Objective questions for e pariksha class iv mmd exams objective questions for epariksha Objective questions on boilers Oc ean ocean ocean heat odd north east ODI ODMCS OEM oil and gas management Oil cooling Oil tanker operations in detail OIL_BURNERS OIL_DETECTOR_FOR_FEED_WATER_TANK. oldest color videotape olivine omnicide On-line examination for MEO Class IV (B) online booking at mmd online epariksha online exam for class iv Online GATE Mock Exam online jobs OPEC open access open hearth process of steel manufacture opencarpc openElec openocd Openstreetmap Operation of a Governor OPERATION OF INERT GAS SYSTEM Operation of the Governor OPERATION_AND_MAINTENANCE_OF_AUXILIARY_BOILERS Oral questions for exams of mmd orals for class iv Orbital Sciences ordinary flyweight type organizational engineering Örjan Gustafsson Orville Redenbacher out of mind. Overspeed Trip Test Device ownership ozone Pacific Pacific Gas & Electric Panhandle Parallel flow Parallel midbody Paris Paris Agreement Part ‘B’ Particulate Materials password patent examiner patent law Patent troll Patrick McNulty pattern language Paul Beckwith Paul Debevec PBS PDF Download PDMS pdms admin PDMS Command PDMS JOB PDMS Material pdms piping designer job PDMS TRICKS PDMS Video PDNS PDS PDS JOB PDS piping designer PE license PE licensing peak peat Pemex Peoples Climate March permafrost personal photos Personal Safety on ships Peter Wadhams petrochemical PG&E Philadelphia train wreck philosophy and technology physical test of boilers PHYSIOLOGICAL MODELLING projects physiotheraphy Projects pickup pieces pilgrimage pingos Pipe Rack Pipe Support PIPE SUPPORT DESIGNER pipeline Pipeline Designer Piping Piping Calculation PIPING CHECKER Piping Data Piping Design Engineer Piping Design system Piping designer Piping Designer Job Piping Draftsman Job Piping en Piping Engineer PIPING ENGINEER JOB PIPING JOB piping layout Piping Layout Engineer Piping lead Piping News Piping standards Piping Stress Engineer PIPING SUPERINTENDENT Piping Supervisor Job Piping Tips Piping Video piston_ring pixels plan planned obsolescence Planned Parenthood Planned Parenthood vs. Casey Plant Plant Engineering Plate PLC plumes plutonium plutonium foam Plymouth University PMC pneumatic actuator Pneumatic complete lecture note Pneumatic Cylinders Pneumatic tutorial problems Pokémon Go Polar vortex police pollution Pollution prevention polygraph polynomial Pope Francis Port State Control a guide for members Positive Train Control power assist brakes Power electronics power grid power system projects Power to the people ppb Practical_Marine_Electrical_Knowledge Practice EPariksha Online MMD Final Exams pre-industrial pre-industrial levels Precautions to be taken when blowing down a boiler Preheater presentation President President Obama PRESS__TEMP_SENSOR PRESS__TEMP_SENSOR_LOCAL_GAUGE_BOARD pressure pressure gauges prestressed concrete Prevailing Wind Preventing Cavitation Prevention of Earth Faults equipment and maintenance previous question papers Priming Centrifugal Pumps Principal Piping Engineer principle printf privacy privacy rights procedure taken before dry-docking a vessel process process control Process data PRODUCTION production engineering Programing PIC microcontrollers project centers project downloads prolife Prop Shaft propeller Propeller shaft earthing system Prosthesis projects PROTECTION AGAINST POWER LOSS Protection and Maintenance protocol PSN Jobs psychological objectivity PTC publican PUMP purifiers push button PVC pyrite QuakeFinder Quarter 1 Quarter 2 Quarter 3 Quarter 4 Question and answer for master oral examination question papers Questions on Bearings questions papers rack and pinion radio Radio Shack radium girls Rafael RAILWAY RECRUITMENT 2012 Rana el Kaliouby raspberry pi raspberry pi 2 raspbian rational objectivity Ray DeGiorgio Ray DiGiorgio Raytheon rds rebar recall Recent RECENT TECHNOLOGY RECENT TECHNOLOGY LIST Reciprocating Compressors Reciprocating Pumps Reclaiming Catholic Social Teaching recombinant DNA record RECRUITMENT red LED red-flag law red-light cameras Redflex reflectivity Refrigeration and Air Conditioning gate notes Refrigeration and Air Conditioning Notes refrigeration cycle using this cycle diagram Refrigeration-and-air-conditioning refrigerator regulation Rehabilitation projects reinforced concrete release removal renewable renewable energy renewable power Repair and Maintenance of Centrifugal Pumps repurpose Residual Stress In Weld Resistance Seam Welding Resistance Spot Welding resistive Resistor Color Code Identification Resistor Colour Coding Resistor Colour Coding online Calculater respiration projects RESUME FORMAT. retransmission fee retransmission fees reversing mechanism Review of maritime transport Richard J. Foster Ring Of Fire Ring Of Ice Ring Tone Cutter rise Rob Howarth Robert Zubrin robot moral reasoning robotics Robotics projects. Robots in medical rocker_gear_and_valves Roelof Schuiling Roger Scruton Rolex Roman Catholic Church Ronald Falcon Scott Rosalind Picard Ross Ulbricht Ross William Ulbricht Rotary Compressors rotary encoder Rotational molding process rotex Royal Society RSArctic14 rumor mill runaway runaway global heating runaway warming Russia safe Safety safety code SAFETY COMBUSTION CONTROLS safety regulation safety system SAFETY_COMBUSTION_CONTROLS Salado bridge collapse Sally Yates sam carana SAMPLING_COOLER Samsung Samsung recall San Bernardino attack San Bruno explosion sandwich panels satellite tracking saving science SCADA scanner Scavenge air cooler scholarships/loans for engineering students Sci-Hub science and technology studies Scientific American scope scope in india scotch yoke Scott Tibbetts SCS sea sea ice sea level sea level rise sea surface sea surface temperature sea surface temperatures Sea water cooling seabed Seabees Seafarers seafloor seal Seam Welding seatbelt Seattle crash Second Law of Thermodynamics security security camera sediments self-advertising self-driving car self-reinforcing Sen. Ted Cruz SENIOR PIPING DESIGNER sensitivity separators sequestration shaft shaft earthing system Sheet Metal Work using SolidWorks Sheila Jasanoff Shielded Metal Arc Welding: (SMAW) Ship construction ship design Ship design lecturer notes for marine engineers SHIP FACTORS THAT AFFECT MANOEUVRING Ship inspection report SIRE programme vessel inspection questionnaries for oil tankers Ship measurement deadweight or displacement Ship Nomenclature Ship Security Alert System SHIP STABILITY AND BUOYANCY Ship to ship transfer guide petroleum third edition 1997 International chamber of shipping oil companies international marine forum Ship to shore .. a practical guide to coastal and marine interpretation Ship_Construction Naval Arch Orals Ship_Safey_Environment_Protection Orals ship-construction-sixth-edition-d-j-eyres ship's alternator Ship's Safety and Environmental Protection - Class II Ship's Safety and Environmental Protection - Class IV Shipboard oil pollution emergency plans Shipping companies address for mariners shipping companies in india Shipping industry guidance on the use of Oily Water Separators Ensuring compliance with MARPOL ships Ships electrical plant and distribution system for the A.C. generators shuttle tankers SI and CI Engines si4703 Siberia Silicon Valley Silk Road simplicity single collar thrust block Single entry centrifugal pump Single Phasing in AC Motors Singularity Siren Server Six stroke engine sizing Slate sleep cycles slushy smart guns Smarter Every Day Smarter Than You Think smartphone smartphone app smartphones smartphones and children smike smoke Smoot-Hawley tariff snow SO2 social construction social network jobs sodium azide sodium cyanide software software engineering Solar Dryer solar energy solar panels Solar projects solar storm SOLAS SOLAS International convention for the safety of life at sea solenoid some orals question for class iv Songs Cutter Sony hack Sony Pictures Entertainment soot sour gas South Pole SP3D JOB space exploration space flight SpaceShipTwo specific heat Speech-music separation-Abstract speed and drift speeding spiritual discipline spontaneous combustion Spoolgen sports camera Sprint Spyware SSAS SSEP SSEP Orals SST St. Francis stability formaulae in detail stability is determined by the relationship of the center of gravity and the ? stainless steel refrigerator standards Star Wars Starting and Reversing Problems in Marine Engines Starting Circuits Starting Circuits of a generator Starting Circuits of an diesel engine Starting procedure of a generator engine State the difference between ME and MC engine State the difference between ME engine and RT flex engine? STATIC ELECTRICITY RELATING TO OIL TANKERS Statutory certificates and documents to be carried on board by all ships steering wheel controls steering_gear_FF STEM Stephan's Law Stephen Salter Steve Case Steven Sherwood Stingray stm32f3 stoorm stop stop-arm violation camera storm storms STRENGTH of a welded joint Strength of Materials Notes by Prof. SATISH C . SHARMA Strength of Materials Notes for gate STRESS CONCENTRATION IN WELD STRESS ENGINEER structural engineering Structural strength STS Stuffing Box Stuxnet subliminal advertising submarine submarine patent Submerged arc welding: (SAW) submit question papers of mmd suicide sulzer Sulzer Common Rail Fuel Injection Systems summit Supercharging surface surface. temperature surge surveillance surveillance software surviving disaster the titanic and solas suspension problem Svalbard SWERUS-C3 switch detent plunger Switches synchronization syncing synthetic DNA Taiwan earthquake Takata take down the Internet talking cars Tanker safety Tanker safety guide liquefied gas tDCS Technical and operational update for bulk carriers technological unemployment TECHNOLOGY Technology Choices technology management tectonic plate TELE COMMUNICATION telegraph temperance temperature temperature anomalies temperature anomaly temperatures Terms Pertaining to ship structures terrorism Tesla Tesla fatality Testing gauge glass and water column tests in a sample of boiler water Tests of watertight doors Texas Ag Industries Association Texas City disaster Texas Department of Transportation Texas earthquakes Texas Health Presbyterian Center Texas Highway Department Texas Railroad Commission Texas State University Texas wind farms TEXTILE texting texting while driving thalidomide The 2 Stroke Crosshead Engine Piston The Curse of the Cloud The Death of Adam the ethics of invention The Free Surface Effect the great unraveling The International Association of Marine Aids to Navigation and Lighthouse Authorities The International Maritime Organization The Interview The Man In the White Suit the Mast The Merchant Shipping Acts and amendments in detail The Radio Technical Commission for Maritime Services The Russians Are Coming The Russians Are Coming The Snake Pit The Turnomat valve of the cylinder the upward pressure of displaced water is called The_2_Stroke_Crosshead_Engine. The_2_Stroke_Diesel_Cycle The_4_Stroke_Diesel_Cycle THE_AIR_STARTING_SYSTEM_HOW_AN_ENGINE_STARTS_ON_AIR The_Turnomat_Valve_Rotator THE-LEARNING-RESOURCE-for-marine-engineers-super-book the-turnomat-valve-rotator Thermal Properties of Engineering Materials Thermohaline Circulation thermonuclear fusion thickness Thomas Edison Thomas Eric Duncan Thorne Lay threat Three Methods of Analysis Three Types of Ship Structures Tianjin explosion timeless way of building Timex Timpson TMS tobacco politics Tom Wheeler TOP ENGINEERING COLLEGES Tor torque Torque & Drag Torstein Viðdalr touch screen touchscreen toxic waste Toyota train wreck Trainee Job Training transcranial direct current stimulation transcranial magnetic stimulation transhumanism transhumanist transition Transportation Security Administration trend troubleshooting antifouling paints Troubleshooting_and_Repair_of_Diesel_Engines truckdriver trunks tsunami Tube and Shell tubulars tunnels Turbine Turbo-Charger | What Is Turbo Charger | Super Charger | Functions Of Turbo Charger | Turbo Charger Parts Turbocharger Deposits and Cleaning Turbocharging Turbocharging and Supercharging tutorial TV broadcasting TV in restaurants tweet tweets Twist Bioscience Twitter Two Stroke Cycle two_stroke_piston two-stroke crosshead marine diesel engines TxDOT Types of cargo pumps Types of Heat Exchanger Construction Types of Heat Exchangers Types Of Motor Enclosures Types of motor protection device Types of scavenging TYPES OF VALVES TYPES_OF_BOILERS Types_of_scavenging typhoon U. S. Environmental Protection Agency U. S. Geological Survey U. S. Naval Research Laboratory U. S. patent U. S. Patent and Trademark Office U. S. Supreme Court U.S. UAS ubuntu Ulysses Cephas Umpqua Community College UN Underwriters Laboratories United Nations Up With Authority upgrade urea US-JOBS usart use of force useful for online epariksha utilitarianism V2V Valve valve and valve gear valve and valve gear mechanism Valve Handbook valve_and_valve_gear valve-and-valve-gear valves valves are fitted to double bottom Valves in detail description vane Vanguard Vannevar Bush vaping vapor Variable geometry turbochargers vehicle-to-vehicle communications Veli Albert Kallio vent ventilation and gas measurement Ventilation of pump rooms and other enclosed spaces vents vessel's principal dimensions videos Vijg Viking ship VIN vinyl chloride Virgin Galactic virtue virus Visual navigation aids VLSI volcanoes Volkswagen volume volumetric efficiency voyage charter VTech VW VW emissions W. L. Craig Ward Leonard Speed Control System for a DC Motor warm warm water warming wartsila rta series Waste Isolation Pilot Plant water water detected in fuel oil Water hammer water supply water vapor WATER_WASHING_HOSE Water-ring primer wateranalysis Watertight doors watertreatment Watertube Boilers wave waves Waze wearable technology Wearing Rings weather weather routing a new approah weathering webcam Wei-Hock Soon weight on bit weld weld defects their causes and how to correct them weld inspection welded joints in detail Welding in detail welding process Welding-Question and answers-for-Students well planning West explosion West Fertilizer Company West fertilizer explosion West Virginia Westinghouse wet bulb What Are Diesel Emissions? What Are Hydrocarbon Traps? What are the angle for v engine and what is their maximum limit. what are the List of Stores on board What Causes Machine Vibration? what does WORK SHOP contains ? What is a cam less engine ? What is A Clamp Meter What Is a Diesel Oxidation Catalyst? What is a Hydrophore System ? What is a planimeter ? What is a Steam Trap? What is an Incinerator ? what is Conduction what is Convection What is Hot Well ? What is meant by Convection What is motor enclosure What is pilgrim nut ? and its use and purpose what is Radiation What is Ship Security Alert System (SSAS)? What is TEU ? What is the Difference between a Humidifier and Vaporizer? What is the Jacket Cooling Water Expansion Tank ? What is the length of crank web What is the meaning of indicator diagrams? what is water hammer What test is carried out wheezy Where is the expansion of main engine accommodated ? Who Owns the Future? Why are indicator diagrams taken ? why boiler treatment Wild Weather Swings wildfire wildfires William J. Watkins Jr. wind wind energy Windows XP winds winter WIPP wireless wireless car hack WMO women engineers women in engineering Woodward speed governor WordPerfect working principle workplace safety World War II World War III WorleyParsons Job WWS X Factor xbmc xbmc 12 xbmc 12.2 xbmc frodo xbmc gotham Y2K Yale Brain Function Lab Yik Yak YouTube