Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)
Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)
Mechanical Engineer's Handbook by Dan B. Marghitu
Department of Mechanical Engineering, Auburn University,
Auburn, Alabama
--
Posted By Blogger to Marine Notes Online on 1/27/2013 02:55:00 am
Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)
Mechanical Engineer's Handbook by Dan B. Marghitu
Department of Mechanical Engineering, Auburn University,
Auburn, Alabama
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
CHAPTER 1 Statics
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Product of a Vector and a Scalar . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Zero Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Resolution of Vectors and Components . . . . . . . . . . . . . . . . . . 6
1.8 Angle between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Scalar (Dot) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Vector (Cross) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Scalar Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.12 Vector Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.13 Derivative of a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2. Centroids and Surface Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Position Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 First Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Centroid of a Set of Points . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Centroid of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . . . . 15
2.5 Mass Center of a Set of Particles . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Mass Center of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . 16
2.7 First Moment of an Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Theorems of Guldinus±Pappus . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Second Moments and the Product of Area . . . . . . . . . . . . . . . . 24
2.10 Transfer Theorem or Parallel-Axis Theorems . . . . . . . . . . . . . . 25
2.11 Polar Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Principal Axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3. Moments and Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Moment of a Bound Vector about a Point . . . . . . . . . . . . . . . . 30
3.2 Moment of a Bound Vector about a Line . . . . . . . . . . . . . . . . . 31
3.3 Moments of a System of Bound Vectors . . . . . . . . . . . . . . . . . 32
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
CHAPTER 1 Statics
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Product of a Vector and a Scalar . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Zero Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Resolution of Vectors and Components . . . . . . . . . . . . . . . . . . 6
1.8 Angle between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Scalar (Dot) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Vector (Cross) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Scalar Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.12 Vector Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.13 Derivative of a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2. Centroids and Surface Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Position Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 First Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Centroid of a Set of Points . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Centroid of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . . . . 15
2.5 Mass Center of a Set of Particles . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Mass Center of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . 16
2.7 First Moment of an Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Theorems of Guldinus±Pappus . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Second Moments and the Product of Area . . . . . . . . . . . . . . . . 24
2.10 Transfer Theorem or Parallel-Axis Theorems . . . . . . . . . . . . . . 25
2.11 Polar Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Principal Axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3. Moments and Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Moment of a Bound Vector about a Point . . . . . . . . . . . . . . . . 30
3.2 Moment of a Bound Vector about a Line . . . . . . . . . . . . . . . . . 31
3.3 Moments of a System of Bound Vectors . . . . . . . . . . . . . . . . . 32
3.4 Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Representing Systems by Equivalent Systems . . . . . . . . . . . . . . 36
4. Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Equilibrium Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5. Dry Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Static Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Kinetic Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Angles of Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CHAPTER 2 Dynamics
Dan B. Marghitu, Bogdan O. Ciocirlan, and Cristian I. Diaconescu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.1 Space and Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3 Angular Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2. Kinematics of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1 Position, Velocity, and Acceleration of a Point. . . . . . . . . . . . . . 54
2.2 Angular Motion of a Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Rotating Unit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Straight Line Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Curvilinear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 59
2.7 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3. Dynamics of a Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1 Newton's Second Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Newtonian Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Inertial Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 77
3.6 Polar and Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Principle of Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.11 Principle of Impulse and Momentum. . . . . . . . . . . . . . . . . . . . 87
3.12 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . 89
3.13 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14 Principle of Angular Impulse and Momentum . . . . . . . . . . . . . . 94
4. Planar Kinematics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Rotation about a Fixed Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Relative Velocity of Two Points of the Rigid Body . . . . . . . . . . . 97
4.4 Angular Velocity Vector of a Rigid Body. . . . . . . . . . . . . . . . . . 98
4.5 Instantaneous Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Relative Acceleration of Two Points of the Rigid Body . . . . . . . 102
4.7 Motion of a Point That Moves Relative to a Rigid Body . . . . . . 103
5. Dynamics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Equation of Motion for the Center of Mass. . . . . . . . . . . . . . . 111
5.2 Angular Momentum Principle for a System of Particles. . . . . . . 113
5.3 Equation of Motion for General Planar Motion . . . . . . . . . . . . 115
5.4 D'Alembert's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
CHAPTER 3 Mechanics of Materials
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.1 Uniformly Distributed Stresses . . . . . . . . . . . . . . . . . . . . . . . 120
1.2 Stress Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.3 Mohr's Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.4 Triaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.5 Elastic Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.7 Shear and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.8 Singularity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.9 Normal Stress in Flexure. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.10 Beams with Asymmetrical Sections . . . . . . . . . . . . . . . . . . . . 139
1.11 Shear Stresses in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1.12 Shear Stresses in Rectangular Section Beams . . . . . . . . . . . . . 142
1.13 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
1.14 Contact Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2. De¯ection and Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.2 Spring Rates for Tension, Compression, and Torsion . . . . . . . . 150
2.3 De¯ection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4 De¯ections Analysis Using Singularity Functions . . . . . . . . . . . 153
2.5 Impact Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.6 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.7 Castigliano's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.8 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.9 Long Columns with Central Loading . . . . . . . . . . . . . . . . . . . 165
2.10 Intermediate-Length Columns with Central Loading. . . . . . . . . 169
2.11 Columns with Eccentric Loading . . . . . . . . . . . . . . . . . . . . . 170
2.12 Short Compression Members . . . . . . . . . . . . . . . . . . . . . . . . 171
3. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.1 Endurance Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.2 Fluctuating Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.3 Constant Life Fatigue Diagram . . . . . . . . . . . . . . . . . . . . . . . 178
3.4 Fatigue Life for Randomly Varying Loads . . . . . . . . . . . . . . . . 181
3.5 Criteria of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Theory of Mechanisms
Dan B. Marghitu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.1 Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.2 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.3 Kinematic Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1.4 Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 199
1.5 Planar Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2. Position Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.1 Cartesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.2 Vector Loop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
3. Velocity and Acceleration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.1 Driver Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.2 RRR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.3 RRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.4 RTR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.5 TRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4. Kinetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.1 Moment of a Force about a Point . . . . . . . . . . . . . . . . . . . . . 223
4.2 Inertia Force and Inertia Moment . . . . . . . . . . . . . . . . . . . . . 224
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.4 Reaction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5 Contour Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
CHAPTER 5 Machine Components
Dan B. Marghitu, Cristian I. Diaconescu, and Nicolae Craciunoiu
1. Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.1 Screw Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.2 Power Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2. Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.2 Geometry and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . 253
2.3 Interference and Contact Ratio . . . . . . . . . . . . . . . . . . . . . . . 258
2.4 Ordinary Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.5 Epicyclic Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
2.6 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.7 Gear Force Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.8 Strength of Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
3. Springs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.2 Material for Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.3 Helical Extension Springs . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.4 Helical Compression Springs . . . . . . . . . . . . . . . . . . . . . . . . 284
3.5 Torsion Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.6 Torsion Bar Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.7 Multileaf Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
3.8 Belleville Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
3.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Representing Systems by Equivalent Systems . . . . . . . . . . . . . . 36
4. Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Equilibrium Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5. Dry Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Static Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Kinetic Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Angles of Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CHAPTER 2 Dynamics
Dan B. Marghitu, Bogdan O. Ciocirlan, and Cristian I. Diaconescu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.1 Space and Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3 Angular Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2. Kinematics of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1 Position, Velocity, and Acceleration of a Point. . . . . . . . . . . . . . 54
2.2 Angular Motion of a Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Rotating Unit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Straight Line Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Curvilinear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 59
2.7 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3. Dynamics of a Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1 Newton's Second Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Newtonian Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Inertial Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 77
3.6 Polar and Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Principle of Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.11 Principle of Impulse and Momentum. . . . . . . . . . . . . . . . . . . . 87
3.12 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . 89
3.13 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14 Principle of Angular Impulse and Momentum . . . . . . . . . . . . . . 94
4. Planar Kinematics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Rotation about a Fixed Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Relative Velocity of Two Points of the Rigid Body . . . . . . . . . . . 97
4.4 Angular Velocity Vector of a Rigid Body. . . . . . . . . . . . . . . . . . 98
4.5 Instantaneous Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Relative Acceleration of Two Points of the Rigid Body . . . . . . . 102
4.7 Motion of a Point That Moves Relative to a Rigid Body . . . . . . 103
5. Dynamics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Equation of Motion for the Center of Mass. . . . . . . . . . . . . . . 111
5.2 Angular Momentum Principle for a System of Particles. . . . . . . 113
5.3 Equation of Motion for General Planar Motion . . . . . . . . . . . . 115
5.4 D'Alembert's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
CHAPTER 3 Mechanics of Materials
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.1 Uniformly Distributed Stresses . . . . . . . . . . . . . . . . . . . . . . . 120
1.2 Stress Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.3 Mohr's Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.4 Triaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.5 Elastic Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.7 Shear and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.8 Singularity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.9 Normal Stress in Flexure. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.10 Beams with Asymmetrical Sections . . . . . . . . . . . . . . . . . . . . 139
1.11 Shear Stresses in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1.12 Shear Stresses in Rectangular Section Beams . . . . . . . . . . . . . 142
1.13 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
1.14 Contact Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2. De¯ection and Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.2 Spring Rates for Tension, Compression, and Torsion . . . . . . . . 150
2.3 De¯ection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4 De¯ections Analysis Using Singularity Functions . . . . . . . . . . . 153
2.5 Impact Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.6 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.7 Castigliano's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.8 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.9 Long Columns with Central Loading . . . . . . . . . . . . . . . . . . . 165
2.10 Intermediate-Length Columns with Central Loading. . . . . . . . . 169
2.11 Columns with Eccentric Loading . . . . . . . . . . . . . . . . . . . . . 170
2.12 Short Compression Members . . . . . . . . . . . . . . . . . . . . . . . . 171
3. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.1 Endurance Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.2 Fluctuating Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.3 Constant Life Fatigue Diagram . . . . . . . . . . . . . . . . . . . . . . . 178
3.4 Fatigue Life for Randomly Varying Loads . . . . . . . . . . . . . . . . 181
3.5 Criteria of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Theory of Mechanisms
Dan B. Marghitu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.1 Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.2 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.3 Kinematic Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1.4 Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 199
1.5 Planar Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2. Position Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.1 Cartesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.2 Vector Loop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
3. Velocity and Acceleration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.1 Driver Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.2 RRR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.3 RRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.4 RTR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.5 TRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4. Kinetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.1 Moment of a Force about a Point . . . . . . . . . . . . . . . . . . . . . 223
4.2 Inertia Force and Inertia Moment . . . . . . . . . . . . . . . . . . . . . 224
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.4 Reaction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5 Contour Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
CHAPTER 5 Machine Components
Dan B. Marghitu, Cristian I. Diaconescu, and Nicolae Craciunoiu
1. Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.1 Screw Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.2 Power Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2. Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.2 Geometry and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . 253
2.3 Interference and Contact Ratio . . . . . . . . . . . . . . . . . . . . . . . 258
2.4 Ordinary Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.5 Epicyclic Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
2.6 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.7 Gear Force Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.8 Strength of Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
3. Springs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.2 Material for Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.3 Helical Extension Springs . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.4 Helical Compression Springs . . . . . . . . . . . . . . . . . . . . . . . . 284
3.5 Torsion Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.6 Torsion Bar Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.7 Multileaf Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
3.8 Belleville Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Table of Contents ix
1.2 Technical Problems of Heat Transfer . . . . . . . . . . . . . . . . . . . 455
2. Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.1 The Heat Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3 Initial, Boundary, and Interface Conditions . . . . . . . . . . . . . . . 461
2.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
2.5 Steady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . 464
2.6 Heat Transfer from Extended Surfaces (Fins) . . . . . . . . . . . . . 468
2.7 Unsteady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . 472
3. Convection Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.1 External Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.2 Internal Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 520
3.3 External Natural Convection. . . . . . . . . . . . . . . . . . . . . . . . . 535
3.4 Internal Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . 549
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
CHAPTER 8 Fluid Dynamics
Nicolae Craciunoiu and Bogdan O. Ciocirlan
1. Fluids Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.1 De®nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.2 Systems of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.3 Speci®c Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.4 Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
1.5 Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.6 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.7 Capillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.8 Bulk Modulus of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.9 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
1.10 Hydrostatic Forces on Surfaces . . . . . . . . . . . . . . . . . . . . . . . 564
1.11 Buoyancy and Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
1.12 Dimensional Analysis and Hydraulic Similitude . . . . . . . . . . . . 565
1.13 Fundamentals of Fluid Flow. . . . . . . . . . . . . . . . . . . . . . . . . 568
2. Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
2.1 Absolute and Gage Pressure . . . . . . . . . . . . . . . . . . . . . . . . 572
2.2 Bernoulli's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.3 Hydraulic Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
2.4 Pressure Intensi®ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
2.5 Pressure Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
2.6 Pressure Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
2.7 Flow-Limiting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
2.8 Hydraulic Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
2.9 Hydraulic Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
2.10 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.11 Accumulator Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
2.12 Fluid Power Transmitted . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
2.13 Piston Acceleration and Deceleration. . . . . . . . . . . . . . . . . . . 604
2.14 Standard Hydraulic Symbols . . . . . . . . . . . . . . . . . . . . . . . . 605
2.15 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Table of Contents ix
1.2 Technical Problems of Heat Transfer . . . . . . . . . . . . . . . . . . . 455
2. Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.1 The Heat Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3 Initial, Boundary, and Interface Conditions . . . . . . . . . . . . . . . 461
2.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
2.5 Steady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . 464
2.6 Heat Transfer from Extended Surfaces (Fins) . . . . . . . . . . . . . 468
2.7 Unsteady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . 472
3. Convection Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.1 External Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.2 Internal Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 520
3.3 External Natural Convection. . . . . . . . . . . . . . . . . . . . . . . . . 535
3.4 Internal Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . 549
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
CHAPTER 8 Fluid Dynamics
Nicolae Craciunoiu and Bogdan O. Ciocirlan
1. Fluids Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.1 De®nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.2 Systems of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.3 Speci®c Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.4 Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
1.5 Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.6 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.7 Capillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.8 Bulk Modulus of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.9 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
1.10 Hydrostatic Forces on Surfaces . . . . . . . . . . . . . . . . . . . . . . . 564
1.11 Buoyancy and Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
1.12 Dimensional Analysis and Hydraulic Similitude . . . . . . . . . . . . 565
1.13 Fundamentals of Fluid Flow. . . . . . . . . . . . . . . . . . . . . . . . . 568
2. Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
2.1 Absolute and Gage Pressure . . . . . . . . . . . . . . . . . . . . . . . . 572
2.2 Bernoulli's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.3 Hydraulic Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
2.4 Pressure Intensi®ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
2.5 Pressure Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
2.6 Pressure Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
2.7 Flow-Limiting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
2.8 Hydraulic Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
2.9 Hydraulic Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
2.10 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.11 Accumulator Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
2.12 Fluid Power Transmitted . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
2.13 Piston Acceleration and Deceleration. . . . . . . . . . . . . . . . . . . 604
2.14 Standard Hydraulic Symbols . . . . . . . . . . . . . . . . . . . . . . . . 605
2.15 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2.16 Representative Hydraulic System . . . . . . . . . . . . . . . . . . . . . 607
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
CHAPTER 9 Control
Mircea Ivanescu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
1.1 A Classic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
2. Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
3. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
3.1 Transfer Functions for Standard Elements . . . . . . . . . . . . . . . 616
3.2 Transfer Functions for Classic Systems . . . . . . . . . . . . . . . . . 617
4. Connection of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5. Poles and Zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
6. Steady-State Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
6.1 Input Variation Steady-State Error . . . . . . . . . . . . . . . . . . . . . 623
6.2 Disturbance Signal Steady-State Error . . . . . . . . . . . . . . . . . . 624
7. Time-Domain Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
8. Frequency-Domain Performances . . . . . . . . . . . . . . . . . . . . . . . . . 631
8.1 The Polar Plot Representation . . . . . . . . . . . . . . . . . . . . . . . 632
8.2 The Logarithmic Plot Representation. . . . . . . . . . . . . . . . . . . 633
8.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
9. Stability of Linear Feedback Systems . . . . . . . . . . . . . . . . . . . . . . . 639
9.1 The Routh±Hurwitz Criterion . . . . . . . . . . . . . . . . . . . . . . . . 640
9.2 The Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
9.3 Stability by Bode Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 648
10. Design of Closed-Loop Control Systems by Pole-Zero Methods . . . . . 649
10.1 Standard Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.2 P-Controller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 651
10.3 Effects of the Supplementary Zero . . . . . . . . . . . . . . . . . . . . 656
10.4 Effects of the Supplementary Pole . . . . . . . . . . . . . . . . . . . . 660
10.5 Effects of Supplementary Poles and Zeros . . . . . . . . . . . . . . . 661
10.6 Design Example: Closed-Loop Control of a Robotic Arm . . . . . 664
11. Design of Closed-Loop Control Systems by Frequential Methods . . . . 669
12. State Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13. Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
13.1 Nonlinear Models: Examples . . . . . . . . . . . . . . . . . . . . . . . . 678
13.2 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
13.3 Stability of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 685
13.4 Liapunov's First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
13.5 Liapunov's Second Method . . . . . . . . . . . . . . . . . . . . . . . . . 689
14. Nonlinear Controllers by Feedback Linearization . . . . . . . . . . . . . . . 691
15. Sliding Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
15.1 Fundamentals of Sliding Control . . . . . . . . . . . . . . . . . . . . . 695
15.2 Variable Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . . 700
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
A.1 Differential Equations of Mechanical Systems . . . . . . . . . . . . . 703
A.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
A.3 Mapping Contours in the s-Plane . . . . . . . . . . . . . . . . . . . . . 707
A.4 The Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 712
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
APPENDIX Differential Equations and Systems of Differential Equations
Horatiu Barbulescu
1. Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
1.1 Ordinary Differential Equations: Introduction . . . . . . . . . . . . . 716
1.2 Integrable Types of Equations . . . . . . . . . . . . . . . . . . . . . . . 726
1.3 On the Existence, Uniqueness, Continuous Dependence on a
Parameter, and Differentiability of Solutions of Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
1.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 774
2. Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.2 Integrating a System of Differential Equations by the
Method of Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2.3 Finding Integrable Combinations . . . . . . . . . . . . . . . . . . . . . 823
2.4 Systems of Linear Differential Equations. . . . . . . . . . . . . . . . . 825
2.5 Systems of Linear Differential Equations with Constant
Coef®cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
CHAPTER 9 Control
Mircea Ivanescu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
1.1 A Classic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
2. Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
3. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
3.1 Transfer Functions for Standard Elements . . . . . . . . . . . . . . . 616
3.2 Transfer Functions for Classic Systems . . . . . . . . . . . . . . . . . 617
4. Connection of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5. Poles and Zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
6. Steady-State Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
6.1 Input Variation Steady-State Error . . . . . . . . . . . . . . . . . . . . . 623
6.2 Disturbance Signal Steady-State Error . . . . . . . . . . . . . . . . . . 624
7. Time-Domain Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
8. Frequency-Domain Performances . . . . . . . . . . . . . . . . . . . . . . . . . 631
8.1 The Polar Plot Representation . . . . . . . . . . . . . . . . . . . . . . . 632
8.2 The Logarithmic Plot Representation. . . . . . . . . . . . . . . . . . . 633
8.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
9. Stability of Linear Feedback Systems . . . . . . . . . . . . . . . . . . . . . . . 639
9.1 The Routh±Hurwitz Criterion . . . . . . . . . . . . . . . . . . . . . . . . 640
9.2 The Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
9.3 Stability by Bode Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 648
10. Design of Closed-Loop Control Systems by Pole-Zero Methods . . . . . 649
10.1 Standard Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.2 P-Controller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 651
10.3 Effects of the Supplementary Zero . . . . . . . . . . . . . . . . . . . . 656
10.4 Effects of the Supplementary Pole . . . . . . . . . . . . . . . . . . . . 660
10.5 Effects of Supplementary Poles and Zeros . . . . . . . . . . . . . . . 661
10.6 Design Example: Closed-Loop Control of a Robotic Arm . . . . . 664
11. Design of Closed-Loop Control Systems by Frequential Methods . . . . 669
12. State Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13. Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
13.1 Nonlinear Models: Examples . . . . . . . . . . . . . . . . . . . . . . . . 678
13.2 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
13.3 Stability of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 685
13.4 Liapunov's First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
13.5 Liapunov's Second Method . . . . . . . . . . . . . . . . . . . . . . . . . 689
14. Nonlinear Controllers by Feedback Linearization . . . . . . . . . . . . . . . 691
15. Sliding Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
15.1 Fundamentals of Sliding Control . . . . . . . . . . . . . . . . . . . . . 695
15.2 Variable Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . . 700
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
A.1 Differential Equations of Mechanical Systems . . . . . . . . . . . . . 703
A.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
A.3 Mapping Contours in the s-Plane . . . . . . . . . . . . . . . . . . . . . 707
A.4 The Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 712
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
APPENDIX Differential Equations and Systems of Differential Equations
Horatiu Barbulescu
1. Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
1.1 Ordinary Differential Equations: Introduction . . . . . . . . . . . . . 716
1.2 Integrable Types of Equations . . . . . . . . . . . . . . . . . . . . . . . 726
1.3 On the Existence, Uniqueness, Continuous Dependence on a
Parameter, and Differentiability of Solutions of Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
1.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 774
2. Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.2 Integrating a System of Differential Equations by the
Method of Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2.3 Finding Integrable Combinations . . . . . . . . . . . . . . . . . . . . . 823
2.4 Systems of Linear Differential Equations. . . . . . . . . . . . . . . . . 825
2.5 Systems of Linear Differential Equations with Constant
Coef®cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
Read More !
Free Download it !
--
Posted By Blogger to Marine Notes Online on 1/27/2013 02:55:00 am