PDC Drill Blanks
These drill blanks consist of a layer of synthetic polycrystalline diamond
bonded to a layer of cemented tugsten carbide using a high-temperature,
high-pressure bonding technique. The resulting blank has the hardness and
wear resistance of diamond which is complemented by the strength and
impact resistance of tungsten carbide.
PDC blanks are self-sharpening in the sense that small, sharp crystals are
repeatedly exposed as each blank wears, and because they are
polycrystalline these blanks have no inherently weak cleavage planes,
which can result in massive fractures as in the large, single crystal
diamonds in the diamond bits.
The blanks are then bonded to tungsten carbide studs, which are then pressfitted
into holes on the steel or matrix head of the bit. The cutters are
positioned in a helical pattern on the bit face so as to have a negative rake,
an equal distribution of weight-on-bit, and a redundant shearing action.
The result being an optimal rate of penetration.
The bit body is forged from the same high strength steel used in the cones
of tri-cone bits, and the face is then coated with a layer of tungsten carbide,
to resist fluid erosion.
These drill blanks consist of a layer of synthetic polycrystalline diamond
bonded to a layer of cemented tugsten carbide using a high-temperature,
high-pressure bonding technique. The resulting blank has the hardness and
wear resistance of diamond which is complemented by the strength and
impact resistance of tungsten carbide.
PDC blanks are self-sharpening in the sense that small, sharp crystals are
repeatedly exposed as each blank wears, and because they are
polycrystalline these blanks have no inherently weak cleavage planes,
which can result in massive fractures as in the large, single crystal
diamonds in the diamond bits.
The blanks are then bonded to tungsten carbide studs, which are then pressfitted
into holes on the steel or matrix head of the bit. The cutters are
positioned in a helical pattern on the bit face so as to have a negative rake,
an equal distribution of weight-on-bit, and a redundant shearing action.
The result being an optimal rate of penetration.
The bit body is forged from the same high strength steel used in the cones
of tri-cone bits, and the face is then coated with a layer of tungsten carbide,
to resist fluid erosion.