During the Deepwater Horizon drilling rig explosion incident on April 20, 2010, the blowout preventer should have been activated automatically, cutting the drillstring and sealing the well to preclude a blowout and subsequent oil spill in the Gulf of Mexico, but it failed to fully engage. Underwater robots (ROVs) later were used to manually trigger the blind shear ram preventer, to no avail.
As of May 2010 it was unknown why the blowout preventer failed. Chief surveyor John David Forsyth of the American Bureau of Shipping testified in hearings before the Joint Investigation of the Minerals Management Service and the U.S. Coast Guard investigating the causes of the explosion that his agency last inspected the rig's blowout preventer in 2005. BP representatives suggested that the preventer could have suffered a hydraulic leak. Gamma-ray imaging of the preventer conducted on May 12 and May 13, 2010 showed that the preventer's internal valves were partially closed and were restricting the flow of oil. Whether the valves closed automatically during the explosion or were shut manually by remotely operated vehicle work is unknown. A statement released by Congressman Bart Stupak revealed that, among other issues, the emergency disconnect system (EDS) did not function as intended and may have malfunctioned due to the explosion on the Deepwater Horizon.[9]
The permit for the Macondo Prospect by the Minerals Management Service in 2009 did not require redundant acoustic control means. Inasmuch as the BOPs could not be closed successfully by underwater manipulation (ROV Intervention), pending results of a complete investigation, it is uncertain whether this omission was a factor in the blowout.
Documents discussed during congressional hearings June 17, 2010, suggested that a battery in the device's control pod was flat and that the rig's owner, Transocean, may have "modified" Cameron's equipment for the Macondo site (including incorrectly routing hydraulic pressure to a stack test valve instead of a pipe ram BOP) which increased the risk of BOP failure, in spite of warnings from their contractor to that effect. Another hypothesis was that a junction in the drilling pipe may have been positioned in the BOP stack in such way that its shear rams had an insurmountable thickness of material to cut through.
It was later discovered that a second piece of tubing got into the BOP stack at some point during the Macondo incident, potentially explaining the failure of the BOP shearing mechanism. As of July 2010 it was unknown whether the tubing might have been casing that shot up through the well or perhaps broken drill pipe that dropped into the well. The DNV final report indicated that the second tube was the segment of the drill string that was ejected after being cut by the blow out preventer shears.
On July 10, 2010 BP began operations to install a sealing cap, also known as a capping stack, atop the failed blowout preventer stack. Based on BP's video feeds of the operation the sealing cap assembly, called Top Hat 10, included a stack of three blind shear ram BOPs manufactured by Hydril (a GE Oil & Gas company), one of Cameron's chief competitors. By July 15 the 3 ram capping stack had sealed the Macondo well, if only temporarily, for the first time in 87 days.
The U.S. government wanted the failed blowout preventer to be replaced in case of any pressure change that occurs when the relief well intersected with the well. On September 3 at 1:20 p.m. CDT the 300 ton failed blowout preventer was removed from the well and began being slowly lifted to the surface. Later that day a replacement blowout preventer was placed on the well. On September 4 at 6:54 p.m. CDT the failed blowout preventer reached the surface of the water and at 9:16 p.m. CDT it was placed in a special container on board the vessel Helix Q4000. The failed blowout preventer was taken to a NASA facility in Louisiana for examination by Det Norske Veritas (DNV).
On 20 March 2011, DNV presented their report to the US Department of Energy. Their primary conclusion was that while the rams succeeded in partly shearing through the drill pipe they failed to seal the bore because the drill pipe had buckled out of the intended line of action of the rams (because the drill string was caught at a tool joint in the upper annular BOP valve), jamming the shears and leaving the drill string shear actuator unable to deliver enough force to complete its stroke and fold the cut pipe over and seal the well. They did not suggest any failure of actuation as would be caused by faulty batteries. The upper section of the blow out preventer failed to separate as designed due to numerous oil leaks compromising hydraulic actuator operation, and this had to be cut free during recovery.
As of May 2010 it was unknown why the blowout preventer failed. Chief surveyor John David Forsyth of the American Bureau of Shipping testified in hearings before the Joint Investigation of the Minerals Management Service and the U.S. Coast Guard investigating the causes of the explosion that his agency last inspected the rig's blowout preventer in 2005. BP representatives suggested that the preventer could have suffered a hydraulic leak. Gamma-ray imaging of the preventer conducted on May 12 and May 13, 2010 showed that the preventer's internal valves were partially closed and were restricting the flow of oil. Whether the valves closed automatically during the explosion or were shut manually by remotely operated vehicle work is unknown. A statement released by Congressman Bart Stupak revealed that, among other issues, the emergency disconnect system (EDS) did not function as intended and may have malfunctioned due to the explosion on the Deepwater Horizon.[9]
The permit for the Macondo Prospect by the Minerals Management Service in 2009 did not require redundant acoustic control means. Inasmuch as the BOPs could not be closed successfully by underwater manipulation (ROV Intervention), pending results of a complete investigation, it is uncertain whether this omission was a factor in the blowout.
Documents discussed during congressional hearings June 17, 2010, suggested that a battery in the device's control pod was flat and that the rig's owner, Transocean, may have "modified" Cameron's equipment for the Macondo site (including incorrectly routing hydraulic pressure to a stack test valve instead of a pipe ram BOP) which increased the risk of BOP failure, in spite of warnings from their contractor to that effect. Another hypothesis was that a junction in the drilling pipe may have been positioned in the BOP stack in such way that its shear rams had an insurmountable thickness of material to cut through.
It was later discovered that a second piece of tubing got into the BOP stack at some point during the Macondo incident, potentially explaining the failure of the BOP shearing mechanism. As of July 2010 it was unknown whether the tubing might have been casing that shot up through the well or perhaps broken drill pipe that dropped into the well. The DNV final report indicated that the second tube was the segment of the drill string that was ejected after being cut by the blow out preventer shears.
On July 10, 2010 BP began operations to install a sealing cap, also known as a capping stack, atop the failed blowout preventer stack. Based on BP's video feeds of the operation the sealing cap assembly, called Top Hat 10, included a stack of three blind shear ram BOPs manufactured by Hydril (a GE Oil & Gas company), one of Cameron's chief competitors. By July 15 the 3 ram capping stack had sealed the Macondo well, if only temporarily, for the first time in 87 days.
The U.S. government wanted the failed blowout preventer to be replaced in case of any pressure change that occurs when the relief well intersected with the well. On September 3 at 1:20 p.m. CDT the 300 ton failed blowout preventer was removed from the well and began being slowly lifted to the surface. Later that day a replacement blowout preventer was placed on the well. On September 4 at 6:54 p.m. CDT the failed blowout preventer reached the surface of the water and at 9:16 p.m. CDT it was placed in a special container on board the vessel Helix Q4000. The failed blowout preventer was taken to a NASA facility in Louisiana for examination by Det Norske Veritas (DNV).
On 20 March 2011, DNV presented their report to the US Department of Energy. Their primary conclusion was that while the rams succeeded in partly shearing through the drill pipe they failed to seal the bore because the drill pipe had buckled out of the intended line of action of the rams (because the drill string was caught at a tool joint in the upper annular BOP valve), jamming the shears and leaving the drill string shear actuator unable to deliver enough force to complete its stroke and fold the cut pipe over and seal the well. They did not suggest any failure of actuation as would be caused by faulty batteries. The upper section of the blow out preventer failed to separate as designed due to numerous oil leaks compromising hydraulic actuator operation, and this had to be cut free during recovery.