2.4 Ports of a PIC microcontroller Term "port" refers to a group of pins on a microcontroller which can be accessed simultaneously, or on which we can set the desired combination of zeros and ones, or read from them an existing status. Physically, port is a register inside a microcontroller which is connected by wires to the pins of a microcontroller. Ports represent physical connection of Central Processing Unit with an outside world. Microcontroller uses them in order to monitor or control other components or devices. Due to functionality, some pins have twofold roles like PA4/TOCKI for instance, which is in the same time the fourth bit of port A and an external input for free-run counter. Selection of one of these two pin functions is done in one of the configuration registers. An illustration of this is the fifth bit T0CS in OPTION register. By selecting one of the functions the other one is disabled. All port pins can be designated as input or output, according to the needs of a device that's being developed. In order to define a pin as input or output pin, the right combination of zeros and ones must be written in TRIS register. If the appropriate bit of TRIS register contains logical "1", then that pin is an input pin, and if the opposite is true, it's an output pin. Every port has its proper TRIS register. Thus, port A has TRISA, and port B has TRISB. Pin direction can be changed during the course of work which is particularly fitting for one-line communication where data flow constantly changes direction. PORTA and PORTB state registers are located in bank 0, while TRISA and TRISB pin direction registers are located in bank 1. Each PORTB pin has a weak internal pull-up resistor (resistor which defines a line to logic one) which can be activated by resetting the seventh bit RBPU in OPTION register. These 'pull-up' resistors are automatically being turned off when port pin is configured as an output. When a microcontroller is started, pull-ups are disabled.
The above example shows how pins 0, 1, 2, and 3 are designated input, and pins 4, 5, 6, and 7 for output, after which PORTB output pins are set to one. It is important to note that PORTA pin RA4 can be input only. On that pin is also situated an external input for timer TMR0. Whether RA4 will be a standard input or an input for a counter depends on T0CS bit (TMR0 Clock Source Select bit). This pin enables the timer TMR0 to increment either from internal oscillator or via external impulses on RA4/T0CKI pin.
Configuring port A:
Example shows how pins 0, 1, 2, 3, and 4 are designated input, and pins 5, 6, and 7 output. After this, it is possible to read the pins RA2, RA3, RA4, and to set logical zero or one to pins RA0 and RA1. |
2.4 Ports of a PIC microcontroller
online engineering degree/engineering degree online/online engineering courses/engineering technology online/engineering courses online/engineering technician degree online/online engineering technology/electronic engineering online
online civil engineering technology degree/online electrical engineering degree/online electrical engineering degree abet/online electrical engineering technology degree/online engineering courses/online engineering degree/online engineering technology/online engineering technology degree/online engineering technology degree programs/online mechanical engineering technology degree