A positive displacement pump is one in which a definite volume of liquid is delivered for each
cycle of pump operation. This volume is constant regardless of the resistance to flow offered
by the system the pump is in, provided the capacity of the power unit driving the pump or pump
component strength limits are not exceeded. The positive displacement pump delivers liquid in
separate volumes with no delivery in between, although a pump having several chambers may
have an overlapping delivery among individual chambers, which minimizes this effect. The
positive displacement pump differs from centrifugal pumps, which deliver a continuous flow for
any given pump speed and discharge resistance.
Positive displacement pumps can be grouped into three basic categories based on their design
and operation. The three groups are reciprocating pumps, rotary pumps, and diaphragm pumps.
Principle of Operation
All positive displacement pumps operate on the same basic principle. This principle can be most
easily demonstrated by considering a reciprocating positive displacement pump consisting of a
single reciprocating piston in a cylinder with a single suction port and a single discharge port as
shown in Figure 12. Check valves in the suction and discharge ports allow flow in only one
direction.
During the suction stroke, the piston moves to the left, causing the check valve in the suction
line between the reservoir and the pump cylinder to open and admit water from the reservoir.
During the discharge stroke, the piston moves to the right, seating the check valve in the suction
line and opening the check valve in the discharge line. The volume of liquid moved by the
pump in one cycle (one suction stroke and one discharge stroke) is equal to the change in the
liquid volume of the cylinder as the piston moves from its farthest left position to its farthest
right position.